BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 22449782)

  • 41. Bioconjugation Approaches to Producing Subunit Vaccines Composed of Protein or Peptide Antigens and Covalently Attached Toll-Like Receptor Ligands.
    Xu Z; Moyle PM
    Bioconjug Chem; 2018 Mar; 29(3):572-586. PubMed ID: 28891637
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cellular immunotherapy for cancer: current concepts and clinical perspectives scientific basis and approaches for therapeutic cancer vaccines. Part I.
    Quatan N; Spicer J; Plunkett T; Pandha H
    Clin Oncol (R Coll Radiol); 2004 Aug; 16(5):356-65. PubMed ID: 15341440
    [No Abstract]   [Full Text] [Related]  

  • 43. Overview and outlook of Toll-like receptor ligand-antigen conjugate vaccines.
    Fujita Y; Taguchi H
    Ther Deliv; 2012 Jun; 3(6):749-60. PubMed ID: 22838070
    [TBL] [Abstract][Full Text] [Related]  

  • 44.
    Hogervorst TP; Li RJE; Marino L; Bruijns SCM; Meeuwenoord NJ; Filippov DV; Overkleeft HS; van der Marel GA; van Vliet SJ; van Kooyk Y; Codée JDC
    ACS Chem Biol; 2020 Mar; 15(3):728-739. PubMed ID: 32045202
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cell-penetrating peptides enhance peptide vaccine accumulation and persistence in lymph nodes to drive immunogenicity.
    Backlund CM; Holden RL; Moynihan KD; Garafola D; Farquhar C; Mehta NK; Maiorino L; Pham S; Iorgulescu JB; Reardon DA; Wu CJ; Pentelute BL; Irvine DJ
    Proc Natl Acad Sci U S A; 2022 Aug; 119(32):e2204078119. PubMed ID: 35914154
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dual Synthetic Peptide Conjugate Vaccine Simultaneously Triggers TLR2 and NOD2 and Activates Human Dendritic Cells.
    Zom GG; Willems MMJHP; Meeuwenoord NJ; Reintjens NRM; Tondini E; Khan S; Overkleeft HS; van der Marel GA; Codee JDC; Ossendorp F; Filippov DV
    Bioconjug Chem; 2019 Apr; 30(4):1150-1161. PubMed ID: 30865430
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Targeting Pattern Recognition Receptors (PRR) for Vaccine Adjuvantation: From Synthetic PRR Agonists to the Potential of Defective Interfering Particles of Viruses.
    Vasou A; Sultanoglu N; Goodbourn S; Randall RE; Kostrikis LG
    Viruses; 2017 Jul; 9(7):. PubMed ID: 28703784
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Toll-like receptor agonists: current status and future perspective on their utility as adjuvants in improving anticancer vaccination strategies.
    Baxevanis CN; Voutsas IF; Tsitsilonis OE
    Immunotherapy; 2013 May; 5(5):497-511. PubMed ID: 23638745
    [TBL] [Abstract][Full Text] [Related]  

  • 49. TLR Agonists as Adjuvants for Cancer Vaccines.
    Li JK; Balic JJ; Yu L; Jenkins B
    Adv Exp Med Biol; 2017; 1024():195-212. PubMed ID: 28921471
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Recent Advances in Toll Like Receptor-Targeting Glycoconjugate Vaccines.
    Li Q; Guo Z
    Molecules; 2018 Jun; 23(7):. PubMed ID: 29966261
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Peptide-Based Cancer Vaccine Strategies and Clinical Results.
    Schneble E; Clifton GT; Hale DF; Peoples GE
    Methods Mol Biol; 2016; 1403():797-817. PubMed ID: 27076168
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Simplified Monopalmitoyl Toll-like Receptor 2 Ligand Mini-UPam for Self-Adjuvanting Neoantigen-Based Synthetic Cancer Vaccines.
    van den Ende TC; Heuts JMM; Gential GPP; Visser M; van de Graaff MJ; Ho NI; Jiskoot W; Valentijn ARPM; Meeuwenoord NJ; Overkleeft HS; Codée JDC; van der Burg SH; Verdegaal EME; van der Marel GA; Ossendorp F; Filippov DV
    Chembiochem; 2021 Apr; 22(7):1215-1222. PubMed ID: 33180981
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Advances in the design and delivery of peptide subunit vaccines with a focus on toll-like receptor agonists.
    Black M; Trent A; Tirrell M; Olive C
    Expert Rev Vaccines; 2010 Feb; 9(2):157-73. PubMed ID: 20109027
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Challenges in the development of effective peptide vaccines for cancer.
    Buteau C; Markovic SN; Celis E
    Mayo Clin Proc; 2002 Apr; 77(4):339-49. PubMed ID: 11936929
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Carrier molecules for use in veterinary vaccines.
    Gerdts V; Mutwiri G; Richards J; van Drunen Littel-van den Hurk S; Potter AA
    Vaccine; 2013 Jan; 31(4):596-602. PubMed ID: 23219438
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Attacking tumor cells with a dual ligand for innate immune receptors.
    Garaude J; Blander JM
    Oncotarget; 2012 Apr; 3(4):361-2. PubMed ID: 22622007
    [No Abstract]   [Full Text] [Related]  

  • 57. Targeting Angiogenesis With Peptide Vaccines.
    Rahat MA
    Front Immunol; 2019; 10():1924. PubMed ID: 31440262
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Advancement of peptide vaccines for hematologic malignancies].
    Zhou WJ; He YJ; Li YH
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2011 Dec; 19(6):1512-7. PubMed ID: 22169315
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Conjugates of aberrant gangliosides in antiglioma vaccine: toxicological assay.
    Lombardi V; Shnaar R; Minev B; Misasi R; Gitstsi Kh; Sorice M; Troncone A
    Bull Exp Biol Med; 2002 Oct; 134(4):363-5. PubMed ID: 12533760
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A conjugate of an oligosaccharide fragment of tumor-associated ganglioside antigen with hemocyanin is a prototype antitumor vaccine.
    Stepanenko RN; Tsvetkov YE; Khatuntseva EA; L'vov VL; Vlasenko RY; Nifant'ev NE; Petrov RV
    Dokl Biol Sci; 2007; 415():298-301. PubMed ID: 17929671
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.