BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 2245042)

  • 1. An interaction between thyroid hormone and nerve growth factor promotes the development of hippocampus, olfactory bulbs and cerebellum: a comparative biochemical study of normal and hypothyroid rats.
    Clos J; Legrand C
    Growth Factors; 1990; 3(3):205-20. PubMed ID: 2245042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical, immunocytochemical and morphological evidence for an interaction between thyroid hormone and nerve growth factor in the developing cerebellum of normal and hypothyroid rats.
    Legrand C; Clos J
    Dev Neurosci; 1991; 13(6):382-96. PubMed ID: 1667097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of perinatal hypo- and hyperthyroidism on the levels of nerve growth factor and its low-affinity receptor in cerebellum.
    Figueiredo BC; Otten U; Strauss S; Volk B; Maysinger D
    Brain Res Dev Brain Res; 1993 Apr; 72(2):237-44. PubMed ID: 8485846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of hypothyroidism on nerve growth factor and norepinephrine concentrations in weight-bearing and non-weight-bearing bones of rats.
    Yao M; Dooley PC; Schuijers JA; Grills BL
    J Musculoskelet Neuronal Interact; 2004 Sep; 4(3):319-24. PubMed ID: 15615500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thyroid hormone promotes transient nerve growth factor synthesis in rat cerebellar neuroblasts.
    Charrasse S; Jehan F; Confort C; Brachet P; Clos J
    Dev Neurosci; 1992; 14(4):282-9. PubMed ID: 1295750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of thyroxine replacement therapy on the growth patterns of body, brain, and cerebellum in the neonatal hypothyroid rat.
    Nathaniel EJ; Nathaniel DR; Nathaniel LM; Burt S; Panfili F
    Exp Neurol; 1988 Jul; 101(1):1-16. PubMed ID: 3391252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlative regulation of nerve growth factor level and choline acetyltransferase activity by thyroxine in particular regions of infant rat brain.
    Hashimoto Y; Furukawa S; Omae F; Miyama Y; Hayashi K
    J Neurochem; 1994 Jul; 63(1):326-32. PubMed ID: 8207437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production rates and turnover of triiodothyronine in rat-developing cerebral cortex and cerebellum. Responses to hypothyroidism.
    Silva JE; Matthews PS
    J Clin Invest; 1984 Sep; 74(3):1035-49. PubMed ID: 6470136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses of young and aged rat CNS to partial cholinergic immunolesions and NGF treatment.
    Wörtwein G; Yu J; Toliver-Kinsky T; Perez-Polo JR
    J Neurosci Res; 1998 May; 52(3):322-33. PubMed ID: 9590440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of thyroid hormone and nerve growth factor in the development of choline acetyltransferase and other cell-specific marker enzymes in the basal forebrain of the rat.
    Patel AJ; Hayashi M; Hunt A
    J Neurochem; 1988 Mar; 50(3):803-11. PubMed ID: 3339354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thyroid hormone modulates the development of cholinergic terminal fields in the rat forebrain: relation to nerve growth factor receptor.
    Oh JD; Butcher LL; Woolf NJ
    Brain Res Dev Brain Res; 1991 Apr; 59(2):133-42. PubMed ID: 1655305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acquisition of submandibular gland nerve growth factor (SMG-NGF) responsiveness to thyroxine administration in neonatal mice.
    Lakshmanan J; Beri U; Perheentupa J; Grueters A; Kim H; Macaso T; Fisher DA
    J Neurosci Res; 1984; 12(1):71-85. PubMed ID: 6207304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Responses in the aged rat brain after total immunolesion.
    Gu Z; Yu J; Perez-Polo JR
    J Neurosci Res; 1998 Oct; 54(1):7-16. PubMed ID: 9778145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ROR alpha gene expression in the perinatal rat cerebellum: ontogeny and thyroid hormone regulation.
    Koibuchi N; Chin WW
    Endocrinology; 1998 May; 139(5):2335-41. PubMed ID: 9564842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of thyroid hormone on the development and gene expression of hormone receptors in rat testes in vivo.
    Rao JN; Liang JY; Chakraborti P; Feng P
    J Endocrinol Invest; 2003 May; 26(5):435-43. PubMed ID: 12906371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thyroid hormone metabolism and the source of plasma triiodothyronine in 2-week-old rats: effects of thyroid status.
    Silva JE; Matthews P
    Endocrinology; 1984 Jun; 114(6):2394-405. PubMed ID: 6723586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thyroxine action on the rat liver nuclear thyroid-hormone receptors. Binding of thyroxine to the nuclear non-histone protein and induction of mitochondrial alpha-glycerophosphate dehydrogenase activity.
    Yoshimasa Y; Hamada S
    Biochem J; 1983 Feb; 210(2):331-7. PubMed ID: 6305340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correction of the biochemical effects of neonatal hypothyroidism by daily low doses of thyroxine. Comparative effects of hyperthyroidism and these corrections.
    Dainat J; Rebière A
    Acta Neurol Scand; 1978 Sep; 58(3):167-77. PubMed ID: 716836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the cholinergic system in the regulation of neurotrophin synthesis.
    Yu J; Pizzo DP; Hutton LA; Perez-Polo JR
    Brain Res; 1995 Dec; 705(1-2):247-52. PubMed ID: 8821756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insulin-like growth factor binding protein expression in the hypothyroid rat is age dependent.
    Näntö-Salonen K; Rosenfeld RG
    Endocrinology; 1992 Sep; 131(3):1489-96. PubMed ID: 1380443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.