BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 22450470)

  • 1. Global proteome survey of protocatechuate- and glucose-grown Corynebacterium glutamicum reveals multiple physiological differences.
    Haussmann U; Poetsch A
    J Proteomics; 2012 May; 75(9):2649-59. PubMed ID: 22450470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological adaptation of Corynebacterium glutamicum to benzoate as alternative carbon source - a membrane proteome-centric view.
    Haussmann U; Qi SW; Wolters D; Rögner M; Liu SJ; Poetsch A
    Proteomics; 2009 Jul; 9(14):3635-51. PubMed ID: 19639586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Key enzymes of the protocatechuate branch of the beta-ketoadipate pathway for aromatic degradation in Corynebacterium glutamicum.
    Shen X; Liu S
    Sci China C Life Sci; 2005 Jun; 48(3):241-9. PubMed ID: 16092756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corynebacterium glutamicum as platform for the production of hydroxybenzoic acids.
    Kallscheuer N; Marienhagen J
    Microb Cell Fact; 2018 May; 17(1):70. PubMed ID: 29753327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A proteomic study of Corynebacterium glutamicum AAA+ protease FtsH.
    Lüdke A; Krämer R; Burkovski A; Schluesener D; Poetsch A
    BMC Microbiol; 2007 Jan; 7():6. PubMed ID: 17254330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological response of Corynebacterium glutamicum to oxidative stress induced by deletion of the transcriptional repressor McbR.
    Krömer JO; Bolten CJ; Heinzle E; Schröder H; Wittmann C
    Microbiology (Reading); 2008 Dec; 154(Pt 12):3917-3930. PubMed ID: 19047758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vanillate metabolism in Corynebacterium glutamicum.
    Merkens H; Beckers G; Wirtz A; Burkovski A
    Curr Microbiol; 2005 Jul; 51(1):59-65. PubMed ID: 15971090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PcaO positively regulates pcaHG of the beta-ketoadipate pathway in Corynebacterium glutamicum.
    Zhao KX; Huang Y; Chen X; Wang NX; Liu SJ
    J Bacteriol; 2010 Mar; 192(6):1565-72. PubMed ID: 20081038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum.
    Brinkrolf K; Brune I; Tauch A
    Genet Mol Res; 2006 Dec; 5(4):773-89. PubMed ID: 17183485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic characterization of 4-cresol catabolism in Corynebacterium glutamicum.
    Li T; Chen X; Chaudhry MT; Zhang B; Jiang CY; Liu SJ
    J Biotechnol; 2014 Dec; 192 Pt B():355-65. PubMed ID: 24480572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA microarray analysis of the nitrogen starvation response of Corynebacterium glutamicum.
    Silberbach M; Hüser A; Kalinowski J; Pühler A; Walter B; Krämer R; Burkovski A
    J Biotechnol; 2005 Oct; 119(4):357-67. PubMed ID: 15935503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiology and global gene expression of a Corynebacterium glutamicum ΔF(1)F(O)-ATP synthase mutant devoid of oxidative phosphorylation.
    Koch-Koerfges A; Kabus A; Ochrombel I; Marin K; Bott M
    Biochim Biophys Acta; 2012 Feb; 1817(2):370-80. PubMed ID: 22050934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptation of Corynebacterium glutamicum to ammonium limitation: a global analysis using transcriptome and proteome techniques.
    Silberbach M; Schäfer M; Hüser AT; Kalinowski J; Pühler A; Krämer R; Burkovski A
    Appl Environ Microbiol; 2005 May; 71(5):2391-402. PubMed ID: 15870326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of citrate utilization in Corynebacterium glutamicum by transcriptome and proteome analysis.
    Polen T; Schluesener D; Poetsch A; Bott M; Wendisch VF
    FEMS Microbiol Lett; 2007 Aug; 273(1):109-19. PubMed ID: 17559405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pstSCAB operon for phosphate uptake is regulated by the global regulator GlxR in Corynebacterium glutamicum.
    Panhorst M; Sorger-Herrmann U; Wendisch VF
    J Biotechnol; 2011 Jul; 154(2-3):149-55. PubMed ID: 20638427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional characterization of the glxR deletion mutant of Corynebacterium glutamicum ATCC 13032: involvement of GlxR in acetate metabolism and carbon catabolite repression.
    Park SY; Moon MW; Subhadra B; Lee JK
    FEMS Microbiol Lett; 2010 Mar; 304(2):107-15. PubMed ID: 20377641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathway identification combining metabolic flux and functional genomics analyses: acetate and propionate activation by Corynebacterium glutamicum.
    Veit A; Rittmann D; Georgi T; Youn JW; Eikmanns BJ; Wendisch VF
    J Biotechnol; 2009 Mar; 140(1-2):75-83. PubMed ID: 19162097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethanol catabolism in Corynebacterium glutamicum.
    Arndt A; Auchter M; Ishige T; Wendisch VF; Eikmanns BJ
    J Mol Microbiol Biotechnol; 2008; 15(4):222-33. PubMed ID: 17693703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of proteome dynamics in Corynebacterium glutamicum by (15)N-labeling and selected reaction monitoring.
    Voges R; Noack S
    J Proteomics; 2012 May; 75(9):2660-9. PubMed ID: 22476105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional regulators of multiple genes involved in carbon metabolism in Corynebacterium glutamicum.
    Teramoto H; Inui M; Yukawa H
    J Biotechnol; 2011 Jul; 154(2-3):114-25. PubMed ID: 21277916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.