BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 22450690)

  • 1. Monomeric and dimeric models of ERK2 in conjunction with studies on cellular localization, nuclear translocation, and in vitro analysis.
    Lee S; Bae YS
    Mol Cells; 2012 Apr; 33(4):325-34. PubMed ID: 22450690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical and biological functions of the N-terminal, noncatalytic domain of extracellular signal-regulated kinase 2.
    Eblen ST; Catling AD; Assanah MC; Weber MJ
    Mol Cell Biol; 2001 Jan; 21(1):249-59. PubMed ID: 11113199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dimerization in MAP-kinase signaling.
    Cobb MH; Goldsmith EJ
    Trends Biochem Sci; 2000 Jan; 25(1):7-9. PubMed ID: 10637602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular signal-regulated kinase 2 (ERK2) phosphorylation sites and docking domain on the nuclear pore complex protein Tpr cooperatively regulate ERK2-Tpr interaction.
    Vomastek T; Iwanicki MP; Burack WR; Tiwari D; Kumar D; Parsons JT; Weber MJ; Nandicoori VK
    Mol Cell Biol; 2008 Nov; 28(22):6954-66. PubMed ID: 18794356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The death effector domain protein PEA-15 prevents nuclear entry of ERK2 by inhibiting required interactions.
    Whitehurst AW; Robinson FL; Moore MS; Cobb MH
    J Biol Chem; 2004 Mar; 279(13):12840-7. PubMed ID: 14707138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a C-terminal region that is required for the nuclear translocation of ERK2 by passive diffusion.
    Shibayama S; Shibata-Seita R; Miura K; Kirino Y; Takishima K
    J Biol Chem; 2002 Oct; 277(40):37777-82. PubMed ID: 12149268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear shuttling of mitogen-activated protein (MAP) kinase (extracellular signal-regulated kinase (ERK) 2) was dynamically controlled by MAP/ERK kinase after antigen stimulation in RBL-2H3 cells.
    Furuno T; Hirashima N; Onizawa S; Sagiya N; Nakanishi M
    J Immunol; 2001 Apr; 166(7):4416-21. PubMed ID: 11254696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new ERK2 binding protein, Naf1, attenuates the EGF/ERK2 nuclear signaling.
    Zhang S; Fukushi M; Hashimoto S; Gao C; Huang L; Fukuyo Y; Nakajima T; Amagasa T; Enomoto S; Koike K; Miura O; Yamamoto N; Tsuchida N
    Biochem Biophys Res Commun; 2002 Sep; 297(1):17-23. PubMed ID: 12220502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epidermal growth factor receptor and protein kinase C signaling to ERK2: spatiotemporal regulation of ERK2 by dual specificity phosphatases.
    Caunt CJ; Rivers CA; Conway-Campbell BL; Norman MR; McArdle CA
    J Biol Chem; 2008 Mar; 283(10):6241-52. PubMed ID: 18178562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The N-terminal domain of ERK1 accounts for the functional differences with ERK2.
    Marchi M; D'Antoni A; Formentini I; Parra R; Brambilla R; Ratto GM; Costa M
    PLoS One; 2008; 3(12):e3873. PubMed ID: 19052640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation.
    Khokhlatchev AV; Canagarajah B; Wilsbacher J; Robinson M; Atkinson M; Goldsmith E; Cobb MH
    Cell; 1998 May; 93(4):605-15. PubMed ID: 9604935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetically encoded bioluminescent indicator for ERK2 dimer in living cells.
    Kaihara A; Umezawa Y
    Chem Asian J; 2008 Jan; 3(1):38-45. PubMed ID: 18058892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular signal-regulated kinase 2-dependent phosphorylation induces cytoplasmic localization and degradation of p21Cip1.
    Hwang CY; Lee C; Kwon KS
    Mol Cell Biol; 2009 Jun; 29(12):3379-89. PubMed ID: 19364816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic regulation of ERK2 nuclear translocation and mobility in living cells.
    Costa M; Marchi M; Cardarelli F; Roy A; Beltram F; Maffei L; Ratto GM
    J Cell Sci; 2006 Dec; 119(Pt 23):4952-63. PubMed ID: 17105770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different domains of the mitogen-activated protein kinases ERK3 and ERK2 direct subcellular localization and upstream specificity in vivo.
    Robinson MJ; Xu Be BE; Stippec S; Cobb MH
    J Biol Chem; 2002 Feb; 277(7):5094-100. PubMed ID: 11741894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ERK2 enters the nucleus by a carrier-independent mechanism.
    Whitehurst AW; Wilsbacher JL; You Y; Luby-Phelps K; Moore MS; Cobb MH
    Proc Natl Acad Sci U S A; 2002 May; 99(11):7496-501. PubMed ID: 12032311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activated ERK2 is a monomer in vitro with or without divalent cations and when complexed to the cytoplasmic scaffold PEA-15.
    Kaoud TS; Devkota AK; Harris R; Rana MS; Abramczyk O; Warthaka M; Lee S; Girvin ME; Riggs AF; Dalby KN
    Biochemistry; 2011 May; 50(21):4568-78. PubMed ID: 21506533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The human Na(+)/H(+) exchanger 1 is a membrane scaffold protein for extracellular signal-regulated kinase 2.
    Hendus-Altenburger R; Pedraz-Cuesta E; Olesen CW; Papaleo E; Schnell JA; Hopper JT; Robinson CV; Pedersen SF; Kragelund BB
    BMC Biol; 2016 Apr; 14():31. PubMed ID: 27083547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The activity of the extracellular signal-regulated kinase 2 is regulated by differential phosphorylation in the activation loop.
    Zhou B; Zhang ZY
    J Biol Chem; 2002 Apr; 277(16):13889-99. PubMed ID: 11839761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subcellular localization determines the protective effects of activated ERK2 against distinct apoptogenic stimuli in myeloid leukemia cells.
    Ajenjo N; Cañón E; Sánchez-Pérez I; Matallanas D; León J; Perona R; Crespo P
    J Biol Chem; 2004 Jul; 279(31):32813-23. PubMed ID: 15173174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.