BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 22450760)

  • 1. Pri-miR-17-92a transcript folds into a tertiary structure and autoregulates its processing.
    Chakraborty S; Mehtab S; Patwardhan A; Krishnan Y
    RNA; 2012 May; 18(5):1014-28. PubMed ID: 22450760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of pri-miRNA tertiary structure in miR-17~92 miRNA biogenesis.
    Chaulk SG; Thede GL; Kent OA; Xu Z; Gesner EM; Veldhoen RA; Khanna SK; Goping IS; MacMillan AM; Mendell JT; Young HS; Fahlman RP; Glover JN
    RNA Biol; 2011; 8(6):1105-14. PubMed ID: 21955497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tertiary structure mapping of the pri-miRNA miR-17~92.
    Chaulk SG; Fahlman RP
    Methods Mol Biol; 2014; 1182():43-55. PubMed ID: 25055900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroRNA miR-92a-1 biogenesis and mRNA targeting is modulated by a tertiary contact within the miR-17~92 microRNA cluster.
    Chaulk SG; Xu Z; Glover MJ; Fahlman RP
    Nucleic Acids Res; 2014 Apr; 42(8):5234-44. PubMed ID: 24520115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loop nucleotides control primary and mature miRNA function in target recognition and repression.
    Yue SB; Trujillo RD; Tang Y; O'Gorman WE; Chen CZ
    RNA Biol; 2011; 8(6):1115-23. PubMed ID: 22142974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N6-methyladenosine marks primary microRNAs for processing.
    Alarcón CR; Lee H; Goodarzi H; Halberg N; Tavazoie SF
    Nature; 2015 Mar; 519(7544):482-5. PubMed ID: 25799998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA.
    Duan R; Pak C; Jin P
    Hum Mol Genet; 2007 May; 16(9):1124-31. PubMed ID: 17400653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide annotation of microRNA primary transcript structures reveals novel regulatory mechanisms.
    Chang TC; Pertea M; Lee S; Salzberg SL; Mendell JT
    Genome Res; 2015 Sep; 25(9):1401-9. PubMed ID: 26290535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Biogenesis Step Upstream of Microprocessor Controls miR-17∼92 Expression.
    Du P; Wang L; Sliz P; Gregory RI
    Cell; 2015 Aug; 162(4):885-99. PubMed ID: 26255770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution Structure of NPSL2, A Regulatory Element in the oncomiR-1 RNA.
    Liu Y; Munsayac A; Hall I; Keane SC
    J Mol Biol; 2022 Sep; 434(18):167688. PubMed ID: 35717998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for terminal loop recognition and stimulation of pri-miRNA-18a processing by hnRNP A1.
    Kooshapur H; Choudhury NR; Simon B; Mühlbauer M; Jussupow A; Fernandez N; Jones AN; Dallmann A; Gabel F; Camilloni C; Michlewski G; Caceres JF; Sattler M
    Nat Commun; 2018 Jun; 9(1):2479. PubMed ID: 29946118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs.
    Cai X; Hagedorn CH; Cullen BR
    RNA; 2004 Dec; 10(12):1957-66. PubMed ID: 15525708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SAFB2 Enables the Processing of Suboptimal Stem-Loop Structures in Clustered Primary miRNA Transcripts.
    Hutter K; Lohmüller M; Jukic A; Eichin F; Avci S; Labi V; Szabo TG; Hoser SM; Hüttenhofer A; Villunger A; Herzog S
    Mol Cell; 2020 Jun; 78(5):876-889.e6. PubMed ID: 32502422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oncogenic Biogenesis of pri-miR-17∼92 Reveals Hierarchy and Competition among Polycistronic MicroRNAs.
    Donayo AO; Johnson RM; Tseng HW; Izreig S; Gariepy A; Mayya VK; Wu E; Alam R; Lussier C; Jones RG; Duchaine TF
    Mol Cell; 2019 Jul; 75(2):340-356.e10. PubMed ID: 31253575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond secondary structure: primary-sequence determinants license pri-miRNA hairpins for processing.
    Auyeung VC; Ulitsky I; McGeary SE; Bartel DP
    Cell; 2013 Feb; 152(4):844-58. PubMed ID: 23415231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PRMT1 Modulates Processing of Asthma-Related Primary MicroRNAs (Pri-miRNAs) into Mature miRNAs in Lung Epithelial Cells.
    Zhai W; Sun H; Li Z; Li L; Jin A; Li Y; Chen J; Yang X; Sun Q; Lu S; Roth M
    J Immunol; 2021 Jan; 206(1):11-22. PubMed ID: 33239422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA secondary structural determinants of miRNA precursor processing in Arabidopsis.
    Song L; Axtell MJ; Fedoroff NV
    Curr Biol; 2010 Jan; 20(1):37-41. PubMed ID: 20015653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DGCR8 recognizes primary transcripts of microRNAs through highly cooperative binding and formation of higher-order structures.
    Faller M; Toso D; Matsunaga M; Atanasov I; Senturia R; Chen Y; Zhou ZH; Guo F
    RNA; 2010 Aug; 16(8):1570-83. PubMed ID: 20558544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure determinants for accurate processing of miR172a in Arabidopsis thaliana.
    Werner S; Wollmann H; Schneeberger K; Weigel D
    Curr Biol; 2010 Jan; 20(1):42-8. PubMed ID: 20015654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency and fate of microRNA editing in human brain.
    Kawahara Y; Megraw M; Kreider E; Iizasa H; Valente L; Hatzigeorgiou AG; Nishikura K
    Nucleic Acids Res; 2008 Sep; 36(16):5270-80. PubMed ID: 18684997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.