BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 22450795)

  • 1. Application of alkaliphilic biofilm-forming bacteria to improve compressive strength of cement-sand mortar.
    Park SJ; Chun WY; Kim WJ; Ghim SY
    J Microbiol Biotechnol; 2012 Mar; 22(3):385-9. PubMed ID: 22450795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcite-forming bacteria for compressive strength improvement in mortar.
    Park SJ; Park YM; Chun WY; Kim WJ; Ghim SY
    J Microbiol Biotechnol; 2010 Apr; 20(4):782-8. PubMed ID: 20467254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Bacillus subtilis 168 as a multifunctional agent for improvement of the durability of cement mortar.
    Park SJ; Park JM; Kim WJ; Ghim SY
    J Microbiol Biotechnol; 2012 Nov; 22(11):1568-74. PubMed ID: 23124349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subsurface Endospore-Forming Bacteria Possess Bio-Sealant Properties.
    Basha S; Lingamgunta LK; Kannali J; Gajula SK; Bandikari R; Dasari S; Dalavai V; Chinthala P; Gundala PB; Kutagolla P; Balaji VK
    Sci Rep; 2018 Apr; 8(1):6448. PubMed ID: 29691456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of bioconcrete material using an enrichment culture of novel thermophilic anaerobic bacteria.
    Ghosh P; Mandal S; Pal S; Bandyopadhyaya G; Chattopadhyay BD
    Indian J Exp Biol; 2006 Apr; 44(4):336-9. PubMed ID: 16629379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Microorganism Sporosarcina pasteurii on the Hydration of Cement Paste.
    Lee JC; Lee CJ; Chun WY; Kim WJ; Chung CW
    J Microbiol Biotechnol; 2015 Aug; 25(8):1328-38. PubMed ID: 25876598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A patent landscape on application of microorganisms in construction industry.
    Dapurkar D; Telang M
    World J Microbiol Biotechnol; 2017 Jul; 33(7):138. PubMed ID: 28585174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of some biotic factors on microbially-induced calcite precipitation in cement mortar.
    Al-Salloum Y; Abbas H; Sheikh QI; Hadi S; Alsayed S; Almusallam T
    Saudi J Biol Sci; 2017 Feb; 24(2):286-294. PubMed ID: 28149164
    [No Abstract]   [Full Text] [Related]  

  • 9. Bacteria incorporated with calcium lactate pentahydrate to improve the mortar properties and self-healing occurrence.
    Chaerun SK; Syarif R; Wattimena RK
    Sci Rep; 2020 Oct; 10(1):17873. PubMed ID: 33087729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Halotolerant, alkaliphilic urease-producing bacteria from different climate zones and their application for biocementation of sand.
    Stabnikov V; Chu J; Ivanov V; Li Y
    World J Microbiol Biotechnol; 2013 Aug; 29(8):1453-60. PubMed ID: 23529354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of nano-materials on the behaviors of sludge mortar specimens.
    Luo HL; Lin DF; Kuo WT
    Water Sci Technol; 2004; 50(9):57-65. PubMed ID: 15580995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mineralization and cementing properties of bio-carbonate cement, bio-phosphate cement, and bio-carbonate/phosphate cement: a review.
    Yu X; Jiang J
    Environ Sci Pollut Res Int; 2018 Aug; 25(22):21483-21497. PubMed ID: 29948713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cost effective cultivation medium for biocalcification of Bacillus pasteurii KCTC 3558 and its effect on cement cubes properties.
    Yoosathaporn S; Tiangburanatham P; Bovonsombut S; Chaipanich A; Pathom-Aree W
    Microbiol Res; 2016; 186-187():132-8. PubMed ID: 27242150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An alkaliphilic bacterium BKH4 of Bakreshwar hot spring pertinent to bioconcrete technology.
    Sarkar A; Chatterjee A; Mandal S; Chattopadhyay B
    J Appl Microbiol; 2019 Jun; 126(6):1742-1750. PubMed ID: 30817048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of different types of nano-silicon dioxide additives on the properties of sludge ash mortar.
    Luo HL; Chang WC; Lin DF
    J Air Waste Manag Assoc; 2009 Apr; 59(4):440-6. PubMed ID: 19418818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocementation of Concrete Pavements Using Microbially Induced Calcite Precipitation.
    Jeong JH; Jo YS; Park CS; Kang CH; So JS
    J Microbiol Biotechnol; 2017 Jul; 27(7):1331-1335. PubMed ID: 28478659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioremediation of mortar made from Ordinary Portland Cement degraded by
    Ngari RW; Thiong'o JK; Wachira JM; Muriithi G; Mutitu DK
    Heliyon; 2021 Jun; 7(6):e07215. PubMed ID: 34159272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of three antifungal calcite-forming bacteria, Arthrobacter nicotianae KNUC2100, Bacillus thuringiensis KNUC2103, and Stenotrophomonas maltophilia KNUC2106, derived from the Korean islands, Dokdo and their application on mortar.
    Park JM; Park SJ; Ghim SY
    J Microbiol Biotechnol; 2013 Sep; 23(9):1269-78. PubMed ID: 23727794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of subaerial biofilms and airborne microflora in the deterioration of stonework: a molecular study.
    Polo A; Gulotta D; Santo N; Di Benedetto C; Fascio U; Toniolo L; Villa F; Cappitelli F
    Biofouling; 2012; 28(10):1093-106. PubMed ID: 23025579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of pore structure on compressive strength of cement mortar.
    Zhao H; Xiao Q; Huang D; Zhang S
    ScientificWorldJournal; 2014; 2014():247058. PubMed ID: 24757414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.