These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 22450797)
21. Photofermentative production of hydrogen and poly-β-hydroxybutyrate from dark fermentation products. Luongo V; Ghimire A; Frunzo L; Fabbricino M; d'Antonio G; Pirozzi F; Esposito G Bioresour Technol; 2017 Mar; 228():171-175. PubMed ID: 28063359 [TBL] [Abstract][Full Text] [Related]
22. Sequential Dark-Photo Batch Fermentation and Kinetic Modelling for Biohydrogen Production Using Cheese Whey as a Feedstock. Rao R; Basak N Appl Biochem Biotechnol; 2022 Sep; 194(9):3930-3960. PubMed ID: 35576044 [TBL] [Abstract][Full Text] [Related]
23. Efficient hydrogen production from acetate through isolated Rhodobacter sphaeroides. Kobayashi J; Yoshimune K; Komoriya T; Kohno H J Biosci Bioeng; 2011 Dec; 112(6):602-5. PubMed ID: 21903465 [TBL] [Abstract][Full Text] [Related]
24. Concomitant biohydrogen and poly-β-hydroxybutyrate production from dark fermentation effluents by adapted Rhodobacter sphaeroides and mixed photofermentative cultures. Ghimire A; Valentino S; Frunzo L; Pirozzi F; Lens PN; Esposito G Bioresour Technol; 2016 Oct; 217():157-64. PubMed ID: 27005789 [TBL] [Abstract][Full Text] [Related]
25. Single-stage photofermentative biohydrogen production from sugar beet molasses by different purple non-sulfur bacteria. Sagir E; Ozgur E; Gunduz U; Eroglu I; Yucel M Bioprocess Biosyst Eng; 2017 Nov; 40(11):1589-1601. PubMed ID: 28730325 [TBL] [Abstract][Full Text] [Related]
26. Effects of light/dark cycle, mixing pattern and partial pressure of H2 on biohydrogen production by Rhodobacter sphaeroides ZX-5. Li X; Wang Y; Zhang S; Chu J; Zhang M; Huang M; Zhuang Y Bioresour Technol; 2011 Jan; 102(2):1142-8. PubMed ID: 20884205 [TBL] [Abstract][Full Text] [Related]
27. [Effect of initial substrate concentrations and pH on hydrogen production from xylose with Clostridium butyricum T4]. Qiu J; Xu J; Ren N Sheng Wu Gong Cheng Xue Bao; 2009 Jun; 25(6):887-91. PubMed ID: 19777817 [TBL] [Abstract][Full Text] [Related]
28. Comparison of different mixed cultures for bio-hydrogen production from ground wheat starch by combined dark and light fermentation. Ozmihci S; Kargi F J Ind Microbiol Biotechnol; 2010 Apr; 37(4):341-7. PubMed ID: 20033469 [TBL] [Abstract][Full Text] [Related]
29. Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fermentative biohydrogen production by Clostridium butyricum. Beckers L; Hiligsmann S; Lambert SD; Heinrichs B; Thonart P Bioresour Technol; 2013 Apr; 133():109-17. PubMed ID: 23428815 [TBL] [Abstract][Full Text] [Related]
30. Biohydrogen Production from Hydrolysates of Selected Tropical Biomass Wastes with Clostridium Butyricum. Dan Jiang ; Fang Z; Chin SX; Tian XF; Su TC Sci Rep; 2016 Jun; 6():27205. PubMed ID: 27251222 [TBL] [Abstract][Full Text] [Related]
31. Flux balance analysis of different carbon source fermentation with hydrogen producing Clostridium butyricum using Cell Net Analyzer. Rafieenia R; Chaganti SR Bioresour Technol; 2015 Jan; 175():613-8. PubMed ID: 25453441 [TBL] [Abstract][Full Text] [Related]
32. Light energy utilization and microbial catalysis for enhanced biohydrogen: Ternary coupling system of triethanolamine-mediated Fe@C-Rhodobacter sphaeroides. Jiang Q; Li Y; Wang M; Cao W; Yang X; Zhang S; Guo L Bioresour Technol; 2024 Jun; 401():130733. PubMed ID: 38670287 [TBL] [Abstract][Full Text] [Related]
33. Novel properties of photofermentative biohydrogen production by purple bacteria Rhodobacter sphaeroides: effects of protonophores and inhibitors of responsible enzymes. Gabrielyan L; Sargsyan H; Trchounian A Microb Cell Fact; 2015 Sep; 14():131. PubMed ID: 26337489 [TBL] [Abstract][Full Text] [Related]
34. Waste-to-energy nexus for circular economy and environmental protection: Recent trends in hydrogen energy. Sharma S; Basu S; Shetti NP; Aminabhavi TM Sci Total Environ; 2020 Apr; 713():136633. PubMed ID: 32019020 [TBL] [Abstract][Full Text] [Related]
35. Application of nanoparticles to increase biological hydrogen production: the difference in metabolic pathways in batch and continuous reactors. Moura AGL; Rabelo CABS; Silva EL; Varesche MBA Environ Technol; 2024 Jun; 45(15):3095-3103. PubMed ID: 37129278 [TBL] [Abstract][Full Text] [Related]
36. Effect of bioaugmentation using Clostridium butyricum on the start-up and the performance of continuous biohydrogen production. Sim YB; Yang J; Kim SM; Joo HH; Jung JH; Kim DH; Kim SH Bioresour Technol; 2022 Dec; 366():128181. PubMed ID: 36307024 [TBL] [Abstract][Full Text] [Related]
37. Enhancement effect of silver nanoparticles on fermentative biohydrogen production using mixed bacteria. Zhao W; Zhang Y; Du B; Wei D; Wei Q; Zhao Y Bioresour Technol; 2013 Aug; 142():240-5. PubMed ID: 23743428 [TBL] [Abstract][Full Text] [Related]
38. Immobilized purple bacteria for light-driven H2 production from starch and potato fermentation effluents. Tekucheva DN; Laurinavichene TV; Seibert M; Tsygankov AA Biotechnol Prog; 2011; 27(5):1248-56. PubMed ID: 21751433 [TBL] [Abstract][Full Text] [Related]
39. Introduction of Glyoxylate Bypass Increases Hydrogen Gas Yield from Acetate and l-Glutamate in Shimizu T; Teramoto H; Inui M Appl Environ Microbiol; 2019 Jan; 85(2):. PubMed ID: 30413472 [No Abstract] [Full Text] [Related]
40. Sodium (Na+) concentration effects on metabolic pathway and estimation of ATP use in dark fermentation hydrogen production through stoichiometric analysis. Lee MJ; Kim TH; Min B; Hwang SJ J Environ Manage; 2012 Oct; 108():22-6. PubMed ID: 22634156 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]