BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 22451111)

  • 1. Stratospheric ozone depletion due to nitrous oxide: influences of other gases.
    Portmann RW; Daniel JS; Ravishankara AR
    Philos Trans R Soc Lond B Biol Sci; 2012 May; 367(1593):1256-64. PubMed ID: 22451111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current understanding of the global cycling of carbon dioxide, methane, and nitrous oxide.
    Nakazawa T
    Proc Jpn Acad Ser B Phys Biol Sci; 2020; 96(9):394-419. PubMed ID: 33177295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-CO2 greenhouse gases and climate change.
    Montzka SA; Dlugokencky EJ; Butler JH
    Nature; 2011 Aug; 476(7358):43-50. PubMed ID: 21814274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling of nitrous oxide and methane by global atmospheric chemistry.
    Prather MJ; Hsu J
    Science; 2010 Nov; 330(6006):952-4. PubMed ID: 21071666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in air quality and tropospheric composition due to depletion of stratospheric ozone and interactions with climate.
    Tang X; Wilson SR; Solomon KR; Shao M; Madronich S
    Photochem Photobiol Sci; 2011 Feb; 10(2):280-91. PubMed ID: 21253665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiative forcing due to anthropogenic greenhouse gas emissions from Finland: methods for estimating forcing of a country or an activity.
    Monni S; Korhonen R; Savolainen I
    Environ Manage; 2003 Mar; 31(3):401-11. PubMed ID: 12592455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions.
    Huttunen JT; Alm J; Liikanen A; Juutinen S; Larmola T; Hammar T; Silvola J; Martikainen PJ
    Chemosphere; 2003 Jul; 52(3):609-21. PubMed ID: 12738299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2.
    van Groenigen KJ; Osenberg CW; Hungate BA
    Nature; 2011 Jul; 475(7355):214-6. PubMed ID: 21753852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing nitrous oxide emissions to mitigate climate change and protect the ozone layer.
    Li L; Xu J; Hu J; Han J
    Environ Sci Technol; 2014 May; 48(9):5290-7. PubMed ID: 24749524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Greenhouse warming by nitrous oxide and methane in the Proterozoic Eon.
    Roberson AL; Roadt J; Halevy I; Kasting JF
    Geobiology; 2011 Jul; 9(4):313-20. PubMed ID: 21682839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere.
    Tian H; Lu C; Ciais P; Michalak AM; Canadell JG; Saikawa E; Huntzinger DN; Gurney KR; Sitch S; Zhang B; Yang J; Bousquet P; Bruhwiler L; Chen G; Dlugokencky E; Friedlingstein P; Melillo J; Pan S; Poulter B; Prinn R; Saunois M; Schwalm CR; Wofsy SC
    Nature; 2016 Mar; 531(7593):225-8. PubMed ID: 26961656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen-Use Efficiency, Nitrous Oxide Emissions, and Cereal Production in Brazil: Current Trends and Forecasts.
    Pires MV; da Cunha DA; de Matos Carlos S; Costa MH
    PLoS One; 2015; 10(8):e0135234. PubMed ID: 26252377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ocean-atmosphere trace gas exchange.
    Carpenter LJ; Archer SD; Beale R
    Chem Soc Rev; 2012 Oct; 41(19):6473-506. PubMed ID: 22821066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of land use on surface-atmosphere exchanges of trace gases and energy in Borneo: comparing fluxes over oil palm plantations and a rainforest.
    Fowler D; Nemitz E; Misztal P; Di Marco C; Skiba U; Ryder J; Helfter C; Cape JN; Owen S; Dorsey J; Gallagher MW; Coyle M; Phillips G; Davison B; Langford B; MacKenzie R; Muller J; Siong J; Dari-Salisburgo C; Di Carlo P; Aruffo E; Giammaria F; Pyle JA; Hewitt CN
    Philos Trans R Soc Lond B Biol Sci; 2011 Nov; 366(1582):3196-209. PubMed ID: 22006962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controls on greenhouse gas concentrations in polymictic headwater lakes in Ireland.
    Whitfield CJ; Aherne J; Baulch HM
    Sci Total Environ; 2011 Dec; 410-411():217-25. PubMed ID: 22018963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in tropospheric composition and air quality due to stratospheric ozone depletion.
    Solomon KR; Tang X; Wilson SR; Zanis P; Bais AF
    Photochem Photobiol Sci; 2003 Jan; 2(1):62-7. PubMed ID: 12659540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in tropospheric composition and air quality due to stratospheric ozone depletion and climate change.
    Wilson SR; Solomon KR; Tang X
    Photochem Photobiol Sci; 2007 Mar; 6(3):301-10. PubMed ID: 17344964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UV dosage levels in summer: increased risk of ozone loss from convectively injected water vapor.
    Anderson JG; Wilmouth DM; Smith JB; Sayres DS
    Science; 2012 Aug; 337(6096):835-9. PubMed ID: 22837384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stratospheric response to trace gas perturbations: changes in ozone and temperature distributions.
    Brasseur G; Hitchman MH
    Science; 1988 Apr; 240(4852):634-7. PubMed ID: 17840906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isotopic exchange between carbon dioxide and ozone via O(1D) in the stratosphere.
    Yung YL; DeMore WB; Pinto JP
    Geophys Res Lett; 1991 Jan; 18(1):13-6. PubMed ID: 11538378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.