These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 22451262)

  • 1. On the uncertainties of photon mass energy-absorption coefficients and their ratios for radiation dosimetry.
    Andreo P; Burns DT; Salvat F
    Phys Med Biol; 2012 Apr; 57(8):2117-36. PubMed ID: 22451262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Backscatter factors and mass energy-absorption coefficient ratios for diagnostic radiology dosimetry.
    Benmakhlouf H; Bouchard H; Fransson A; Andreo P
    Phys Med Biol; 2011 Nov; 56(22):7179-204. PubMed ID: 22024474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study of Type B uncertainties associated with the photoelectric effect in low-energy Monte Carlo simulations.
    Valdes-Cortez C; Mansour I; Rivard MJ; Ballester F; Mainegra-Hing E; Thomson RM; Vijande J
    Phys Med Biol; 2021 May; 66(10):. PubMed ID: 33662945
    [No Abstract]   [Full Text] [Related]  

  • 4. A robust method for determining the absorbed dose to water in a phantom for low-energy photon radiation.
    Schneider T
    Phys Med Biol; 2011 Jun; 56(11):3387-402. PubMed ID: 21572183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation evaluation of NIST air-kerma rate calibration standard for electronic brachytherapy.
    Hiatt JR; Rivard MJ; Hughes HG
    Med Phys; 2016 Mar; 43(3):1119-29. PubMed ID: 26936699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of the mass energy-absorption coefficient of air for x-rays in the range from 3 to 60 keV.
    Buhr H; Büermann L; Gerlach M; Krumrey M; Rabus H
    Phys Med Biol; 2012 Dec; 57(24):8231-47. PubMed ID: 23192280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of the x-ray mass energy-absorption coefficient of air using 3 keV to 10 keV synchrotron radiation.
    Büermann L; Grosswendt B; Kramer HM; Selbach HJ; Gerlach M; Hoffmann M; Krumrey M
    Phys Med Biol; 2006 Oct; 51(20):5125-50. PubMed ID: 17019029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An investigation of backscatter factors for kilovoltage x-rays: a comparison between Monte Carlo simulations and Gafchromic EBT film measurements.
    Kim J; Hill R; Claridge Mackonis E; Kuncic Z
    Phys Med Biol; 2010 Feb; 55(3):783-97. PubMed ID: 20071763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo simulation of MOSFET detectors for high-energy photon beams using the PENELOPE code.
    Panettieri V; Duch MA; Jornet N; Ginjaume M; Carrasco P; Badal A; Ortega X; Ribas M
    Phys Med Biol; 2007 Jan; 52(1):303-16. PubMed ID: 17183143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the formalism used to determine the absorbed dose for low-energy x-ray beams.
    Chica U; Anguiano M; Lallena AM
    Phys Med Biol; 2008 Dec; 53(23):6963-77. PubMed ID: 19001702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-energy CT-based material extraction for tissue segmentation in Monte Carlo dose calculations.
    Bazalova M; Carrier JF; Beaulieu L; Verhaegen F
    Phys Med Biol; 2008 May; 53(9):2439-56. PubMed ID: 18421124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dosimetric characterization of an 192Ir brachytherapy source with the Monte Carlo code PENELOPE.
    Casado FJ; García-Pareja S; Cenizo E; Mateo B; Bodineau C; Galán P
    Phys Med; 2010; 26(3):132-9. PubMed ID: 20034828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calorimetric determination of the absorbed dose to water for medium-energy x-rays with generating voltages from 70 to 280 kV.
    Krauss A; Büermann L; Kramer HM; Selbach HJ
    Phys Med Biol; 2012 Oct; 57(19):6245-68. PubMed ID: 22975691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photon fluence perturbation correction factors for solid state detectors irradiated in kilovoltage photon beams.
    Mobit PN; Sandison GA; Nahum AE
    Phys Med Biol; 2000 Feb; 45(2):267-77. PubMed ID: 10701503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Monte Carlo study of the energy dependence of Al2O3:C crystals for real-time in vivo dosimetry in mammography.
    Aznar MC; Medin J; Hemdal B; Thilander Klang A; Bøtter-Jensen L; Mattsson S
    Radiat Prot Dosimetry; 2005; 114(1-3):444-9. PubMed ID: 15933153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-energy photons in high-energy photon fields--Monte Carlo generated spectra and a new descriptive parameter.
    Chofor N; Harder D; Willborn K; Rühmann A; Poppe B
    Z Med Phys; 2011 Sep; 21(3):183-97. PubMed ID: 21530198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of systematic uncertainties in Monte Carlo-calculated beam quality correction factors.
    Wulff J; Heverhagen JT; Zink K; Kawrakow I
    Phys Med Biol; 2010 Aug; 55(16):4481-93. PubMed ID: 20668340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The determination of beam quality correction factors: Monte Carlo simulations and measurements.
    González-Castaño DM; Hartmann GH; Sánchez-Doblado F; Gómez F; Kapsch RP; Pena J; Capote R
    Phys Med Biol; 2009 Aug; 54(15):4723-41. PubMed ID: 19622853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating photon interaction coefficients from single energy x-ray CT.
    Midgley SM
    Phys Med Biol; 2012 Dec; 57(23):8079-98. PubMed ID: 23159870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data for the dosimetry of low- and medium-energy kV x rays.
    Andreo P
    Phys Med Biol; 2019 Oct; 64(20):205019. PubMed ID: 31491771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.