These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
308 related articles for article (PubMed ID: 22452349)
1. In silico discovery and virtual screening of multi-target inhibitors for proteins in Mycobacterium tuberculosis. Speck-Planche A; Kleandrova VV; Luan F; Cordeiro MN Comb Chem High Throughput Screen; 2012 Sep; 15(8):666-73. PubMed ID: 22452349 [TBL] [Abstract][Full Text] [Related]
2. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship. Tomioka H Curr Pharm Des; 2014; 20(27):4305-6. PubMed ID: 24245755 [TBL] [Abstract][Full Text] [Related]
3. Chemoinformatics in multi-target drug discovery for anti-cancer therapy: in silico design of potent and versatile anti-brain tumor agents. Speck-Planche A; Kleandrova VV; Luan F; Cordeiro MN Anticancer Agents Med Chem; 2012 Jul; 12(6):678-85. PubMed ID: 22043995 [TBL] [Abstract][Full Text] [Related]
4. Rational drug design for anti-cancer chemotherapy: multi-target QSAR models for the in silico discovery of anti-colorectal cancer agents. Speck-Planche A; Kleandrova VV; Luan F; Cordeiro MN Bioorg Med Chem; 2012 Aug; 20(15):4848-55. PubMed ID: 22750007 [TBL] [Abstract][Full Text] [Related]
5. [Development of antituberculous drugs: current status and future prospects]. Tomioka H; Namba K Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921 [TBL] [Abstract][Full Text] [Related]
6. Sawicki R; Ginalska G Future Med Chem; 2019 Aug; 11(16):2193-2203. PubMed ID: 31538522 [TBL] [Abstract][Full Text] [Related]
7. New insights toward the discovery of antibacterial agents: multi-tasking QSBER model for the simultaneous prediction of anti-tuberculosis activity and toxicological profiles of drugs. Speck-Planche A; Kleandrova VV; Cordeiro MN Eur J Pharm Sci; 2013 Mar; 48(4-5):812-8. PubMed ID: 23376211 [TBL] [Abstract][Full Text] [Related]
8. Chemoinformatics in anti-cancer chemotherapy: multi-target QSAR model for the in silico discovery of anti-breast cancer agents. Speck-Planche A; Kleandrova VV; Luan F; Cordeiro MN Eur J Pharm Sci; 2012 Aug; 47(1):273-9. PubMed ID: 22538055 [TBL] [Abstract][Full Text] [Related]
9. An Kumar S; Sahu P; Jena L Int J Mycobacteriol; 2019; 8(3):252-261. PubMed ID: 31512601 [TBL] [Abstract][Full Text] [Related]
10. Identification of new benzamide inhibitor against α-subunit of tryptophan synthase from Mycobacterium tuberculosis through structure-based virtual screening, anti-tuberculosis activity and molecular dynamics simulations. Naz S; Farooq U; Ali S; Sarwar R; Khan S; Abagyan R J Biomol Struct Dyn; 2019 Mar; 37(4):1043-1053. PubMed ID: 29502488 [TBL] [Abstract][Full Text] [Related]
11. Identification of glucosyl-3-phosphoglycerate phosphatase as a novel drug target against resistant strain of Mycobacterium tuberculosis (XDR1219) by using comparative metabolic pathway approach. Uddin R; Zahra NU; Azam SS Comput Biol Chem; 2019 Apr; 79():91-102. PubMed ID: 30743161 [TBL] [Abstract][Full Text] [Related]
12. Perspective: Challenges and opportunities in TB drug discovery from phenotypic screening. Manjunatha UH; Smith PW Bioorg Med Chem; 2015 Aug; 23(16):5087-97. PubMed ID: 25577708 [TBL] [Abstract][Full Text] [Related]
13. Combining cheminformatics methods and pathway analysis to identify molecules with whole-cell activity against Mycobacterium tuberculosis. Sarker M; Talcott C; Madrid P; Chopra S; Bunin BA; Lamichhane G; Freundlich JS; Ekins S Pharm Res; 2012 Aug; 29(8):2115-27. PubMed ID: 22477069 [TBL] [Abstract][Full Text] [Related]
14. A ligand-based approach for the in silico discovery of multi-target inhibitors for proteins associated with HIV infection. Speck-Planche A; Kleandrova VV; Luan F; Cordeiro MN Mol Biosyst; 2012 Aug; 8(8):2188-96. PubMed ID: 22688327 [TBL] [Abstract][Full Text] [Related]
15. QSAR-driven design, synthesis and discovery of potent chalcone derivatives with antitubercular activity. Gomes MN; Braga RC; Grzelak EM; Neves BJ; Muratov E; Ma R; Klein LL; Cho S; Oliveira GR; Franzblau SG; Andrade CH Eur J Med Chem; 2017 Sep; 137():126-138. PubMed ID: 28582669 [TBL] [Abstract][Full Text] [Related]
16. Physiological modeling of the metaverse of the Mycobacterium tuberculosis β-CA inhibition mechanism. Giovannuzzi S; Shyamal SS; Bhowmik R; Ray R; Manaithiya A; Carta F; Parrkila S; Aspatwar A; Supuran CT Comput Biol Med; 2024 Oct; 181():109029. PubMed ID: 39173489 [TBL] [Abstract][Full Text] [Related]
17. Recent progress in the drug development of coumarin derivatives as potent antituberculosis agents. Keri RS; Sasidhar BS; Nagaraja BM; Santos MA Eur J Med Chem; 2015 Jul; 100():257-69. PubMed ID: 26112067 [TBL] [Abstract][Full Text] [Related]
18. Recent advances in QSAR-based identification and design of anti-tubercular agents. Nidhi ; Siddiqi MI Curr Pharm Des; 2014; 20(27):4418-26. PubMed ID: 24245761 [TBL] [Abstract][Full Text] [Related]
19. QSAR Studies, Synthesis and Antibacterial Assessment of New Inhibitors Against Multidrug-Resistant Mycobacterium tuberculosis. Kovalishyn V; Brovarets V; Blagodatnyi V; Kopernyk I; Hodyna D; Chumachenko S; Shablykin O; Kozachenko O; Vovk M; Barus M; Bratenko M; Metelytsia L Curr Drug Discov Technol; 2017; 14(1):25-38. PubMed ID: 27829331 [TBL] [Abstract][Full Text] [Related]
20. An integrated computational approach of molecular dynamics simulations, receptor binding studies and pharmacophore mapping analysis in search of potent inhibitors against tuberculosis. Agarwal S; Verma E; Kumar V; Lall N; Sau S; Iyer AK; Kashaw SK J Mol Graph Model; 2018 Aug; 83():17-32. PubMed ID: 29753941 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]