These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 22452392)
1. Spectrophotometric color measurement for early detection and monitoring of greening on granite buildings. Sanmartín P; Vázquez-Nion D; Silva B; Prieto B Biofouling; 2012; 28(3):329-38. PubMed ID: 22452392 [TBL] [Abstract][Full Text] [Related]
2. Subaerial biofilms on granitic historic buildings: microbial diversity and development of phototrophic multi-species cultures. Vázquez-Nion D; Rodríguez-Castro J; López-Rodríguez MC; Fernández-Silva I; Prieto B Biofouling; 2016 Jul; 32(6):657-69. PubMed ID: 27192622 [TBL] [Abstract][Full Text] [Related]
3. Quantification of algal biofilms colonising building materials: chlorophyll a measured by PAM-fluorometry as a biomass parameter. Eggert A; Häubner N; Klausch S; Karsten U; Schumann R Biofouling; 2006; 22(1-2):79-90. PubMed ID: 16581672 [TBL] [Abstract][Full Text] [Related]
4. Laboratory grown subaerial biofilms on granite: application to the study of bioreceptivity. Vázquez-Nion D; Silva B; Troiano F; Prieto B Biofouling; 2017 Jan; 33(1):24-35. PubMed ID: 27911078 [TBL] [Abstract][Full Text] [Related]
5. Algal 'greening' and the conservation of stone heritage structures. Cutler NA; Viles HA; Ahmad S; McCabe S; Smith BJ Sci Total Environ; 2013 Jan; 442():152-64. PubMed ID: 23178775 [TBL] [Abstract][Full Text] [Related]
6. Color measurements as a reliable method for estimating chlorophyll degradation to phaeopigments. Sanmartín P; Villa F; Silva B; Cappitelli F; Prieto B Biodegradation; 2011 Jul; 22(4):763-71. PubMed ID: 20714920 [TBL] [Abstract][Full Text] [Related]
7. [Phototropic biofilms study by optical microscopy and scanning electron microscopy]. Gómez de Saravia SG; Fontana JM; Guiamet SP Rev Argent Microbiol; 2010; 42(4):315. PubMed ID: 21229204 [No Abstract] [Full Text] [Related]
8. Quantification of phototrophic biomass on rocks: optimization of chlorophyll-a extraction by response surface methodology. Fernández-Silva I; Sanmartín P; Silva B; Moldes A; Prieto B J Ind Microbiol Biotechnol; 2011 Jan; 38(1):179-88. PubMed ID: 20820857 [TBL] [Abstract][Full Text] [Related]
9. Identification of granite varieties from colour spectrum data. Araújo M; Martínez J; Ordóñez C; Vilán JA Sensors (Basel); 2010; 10(9):8572-84. PubMed ID: 22163673 [TBL] [Abstract][Full Text] [Related]
10. An integrated approach for assessing the bioreceptivity of glazed tiles to phototrophic microorganisms. Coutinho ML; Miller AZ; Rogerio-Candelera MA; Mirão J; Cerqueira Alves L; Veiga JP; Águas H; Pereira S; Lyubchyk A; Macedo MF Biofouling; 2016; 32(3):243-59. PubMed ID: 26900634 [TBL] [Abstract][Full Text] [Related]
11. Chemical and biological characterisation of biofilms formed on different substrata in Tisza river (Hungary). Kröpfl K; Vladár P; Szabó K; Acs E; Borsodi AK; Szikora S; Caroli S; Záray G Environ Pollut; 2006 Nov; 144(2):626-31. PubMed ID: 16542765 [TBL] [Abstract][Full Text] [Related]
12. Comparative study of dark patinas on granitic outcrops and buildings. Prieto B; Aira N; Silva B Sci Total Environ; 2007 Aug; 381(1-3):280-9. PubMed ID: 17499341 [TBL] [Abstract][Full Text] [Related]
13. Characteristics and role of the exocellular polysaccharides produced by five cyanobacteria isolated from phototrophic biofilms growing on stone monuments. Rossi F; Micheletti E; Bruno L; Adhikary SP; Albertano P; Philippis RD Biofouling; 2012; 28(2):215-24. PubMed ID: 22352355 [TBL] [Abstract][Full Text] [Related]
14. Influence of the properties of granitic rocks on their bioreceptivity to subaerial phototrophic biofilms. Vázquez-Nion D; Silva B; Prieto B Sci Total Environ; 2018 Jan; 610-611():44-54. PubMed ID: 28802109 [TBL] [Abstract][Full Text] [Related]
15. A photosynthetic rotating annular bioreactor (Taylor-Couette type flow) for phototrophic biofilm cultures. Paule A; Lauga B; Ten-Hage L; Morchain J; Duran R; Paul E; Rols JL Water Res; 2011 Nov; 45(18):6107-18. PubMed ID: 21962848 [TBL] [Abstract][Full Text] [Related]
16. Development of river biofilms on artificial substrates and their potential for biomonitoring water quality. Tien CJ; Wu WH; Chuang TL; Chen CS Chemosphere; 2009 Aug; 76(9):1288-95. PubMed ID: 19576617 [TBL] [Abstract][Full Text] [Related]
17. Biofilm formation on the surface of ceramic tiles. Sessa R; Di Pietro M; Zamparelli M; Schiavoni G; Del Piano M New Microbiol; 2000 Oct; 23(4):407-13. PubMed ID: 11061629 [TBL] [Abstract][Full Text] [Related]
18. Microfouling studies on experimental test blocks of steel-making slag and concrete exposed to seawater off Chiba, Japan. Nandakumar K; Matsunaga H; Takagi M Biofouling; 2003 Aug; 19(4):257-67. PubMed ID: 14626845 [TBL] [Abstract][Full Text] [Related]
19. Appreciating the role of carbon nanotube composites in preventing biofouling and promoting biofilms on material surfaces in environmental engineering: a review. Upadhyayula VK; Gadhamshetty V Biotechnol Adv; 2010; 28(6):802-16. PubMed ID: 20599491 [TBL] [Abstract][Full Text] [Related]
20. A synthetic de-greening gene circuit provides a reporting system that is remotely detectable and has a re-set capacity. Antunes MS; Ha SB; Tewari-Singh N; Morey KJ; Trofka AM; Kugrens P; Deyholos M; Medford JI Plant Biotechnol J; 2006 Nov; 4(6):605-22. PubMed ID: 17309732 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]