These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 22453409)

  • 41. Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy.
    Ortega-Arroyo J; Kukura P
    Phys Chem Chem Phys; 2012 Dec; 14(45):15625-36. PubMed ID: 22996289
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of drift correction precision on super-resolution localization microscopy.
    Shang M; Huang ZL; Wang Y
    Appl Opt; 2022 May; 61(13):3516-3522. PubMed ID: 36256388
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Estimation of microscope drift using fluorescent nanodiamonds as fiducial markers.
    Colomb W; Czerski J; Sau JD; Sarkar SK
    J Microsc; 2017 Jun; 266(3):298-306. PubMed ID: 28328030
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Method for high frequency tracking and sub-nm sample stabilization in single molecule fluorescence microscopy.
    Schmidt PD; Reichert BH; Lajoie JG; Sivasankar S
    Sci Rep; 2018 Sep; 8(1):13912. PubMed ID: 30224660
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Drift correction for single-molecule imaging by molecular constraint field, a distance minimum metric.
    Han R; Wang L; Xu F; Zhang Y; Zhang M; Liu Z; Ren F; Zhang F
    BMC Biophys; 2015; 8(1):1. PubMed ID: 25649266
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Robust, fiducial-free drift correction for super-resolution imaging.
    Wester MJ; Schodt DJ; Mazloom-Farsibaf H; Fazel M; Pallikkuth S; Lidke KA
    Sci Rep; 2021 Dec; 11(1):23672. PubMed ID: 34880301
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A drift correction procedure.
    Salit ML; Turk GC
    Anal Chem; 1998 Aug; 70(15):3184-90. PubMed ID: 21644656
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sample drift estimation method based on speckle patterns formed by backscattered laser light.
    Chen SY; Heintzmann R; Cremer C
    Biomed Opt Express; 2019 Dec; 10(12):6462-6475. PubMed ID: 31853411
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Drift correction in localization microscopy using entropy minimization.
    Cnossen J; Cui TJ; Joo C; Smith C
    Opt Express; 2021 Aug; 29(18):27961-27974. PubMed ID: 34614938
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Real-time 3D stabilization of a super-resolution microscope using an electrically tunable lens.
    Tafteh R; Abraham L; Seo D; Lu HY; Gold MR; Chou KC
    Opt Express; 2016 Oct; 24(20):22959-22970. PubMed ID: 27828362
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Image artifacts in single molecule localization microscopy: why optimization of sample preparation protocols matters.
    Whelan DR; Bell TD
    Sci Rep; 2015 Jan; 5():7924. PubMed ID: 25603780
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-precision 3D drift correction with differential phase contrast images.
    Shang M; Zhou Z; Kuang W; Wang Y; Xin B; Huang ZL
    Opt Express; 2021 Oct; 29(21):34641-34655. PubMed ID: 34809249
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Drift correction in ptychographic diffractive imaging.
    Beckers M; Senkbeil T; Gorniak T; Giewekemeyer K; Salditt T; Rosenhahn A
    Ultramicroscopy; 2013 Mar; 126():44-7. PubMed ID: 23385291
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Autofocusing system based on optical astigmatism analysis of single-molecule images.
    Hwang W; Bae S; Hohng S
    Opt Express; 2012 Dec; 20(28):29353-60. PubMed ID: 23388762
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Height drift correction in non-raster atomic force microscopy.
    Meyer TR; Ziegler D; Brune C; Chen A; Farnham R; Huynh N; Chang JM; Bertozzi AL; Ashby PD
    Ultramicroscopy; 2014 Feb; 137():48-54. PubMed ID: 24295799
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Seeing is believing? A beginners' guide to practical pitfalls in image acquisition.
    North AJ
    J Cell Biol; 2006 Jan; 172(1):9-18. PubMed ID: 16390995
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optical far-field microscopy of single molecules with 3.4 nm lateral resolution.
    Bloess A; Durand Y; Matsushita M; van Dermeer H; Brakenhoff GJ; Schmidt J
    J Microsc; 2002 Jan; 205(Pt 1):76-85. PubMed ID: 11856383
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A machine learning approach for online automated optimization of super-resolution optical microscopy.
    Durand A; Wiesner T; Gardner MA; Robitaille LÉ; Bilodeau A; Gagné C; De Koninck P; Lavoie-Cardinal F
    Nat Commun; 2018 Dec; 9(1):5247. PubMed ID: 30531817
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CDrift: An Algorithm to Correct Linear Drift From A Single High-Resolution STEM Image.
    Bárcena-González G; Guerrero-Lebrero MP; Guerrero E; Yañez A; Nuñez-Moraleda B; Fernández-Reyes D; Real P; González D; Galindo PL
    Microsc Microanal; 2020 Oct; 26(5):913-920. PubMed ID: 32703333
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Addendum: Parameter-free image resolution estimation based on decorrelation analysis.
    Descloux A; Grußmayer KS; Radenovic A
    Nat Methods; 2020 Oct; 17(10):1061-1063. PubMed ID: 32901156
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.