These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 22453799)
1. In vivo direct interaction of the antibiotic primycin on a Candida albicans clinical isolate and its ergosterol-less mutant. Virág E; Juhász A; Kardos R; Gazdag Z; Papp G; Pénzes A; Nyitrai M; Vágvölgyi C; Pesti M Acta Biol Hung; 2012 Mar; 63(1):38-51. PubMed ID: 22453799 [TBL] [Abstract][Full Text] [Related]
2. Direct in vivo interaction of the antibiotic primycin with the plasma membrane of Candida albicans: an EPR study. Virág E; Belagyi J; Gazdag Z; Vágvölgyi C; Pesti M Biochim Biophys Acta; 2012 Jan; 1818(1):42-8. PubMed ID: 21978596 [TBL] [Abstract][Full Text] [Related]
3. Antifungal activity of the primycin complex and its main components A1, A2 and C1 on a Candida albicans clinical isolate, and their effects on the dynamic plasma membrane changes. Virág E; Belagyi J; Kocsubé S; Vágvölgyi C; Pesti M J Antibiot (Tokyo); 2013 Feb; 66(2):67-72. PubMed ID: 23168406 [TBL] [Abstract][Full Text] [Related]
4. Complex formation between primycin and ergosterol: entropy-driven initiation of modification of the fungal plasma membrane structure. Virág E; Pesti M; Kunsági-Máté S J Antibiot (Tokyo); 2012 Apr; 65(4):193-6. PubMed ID: 22274705 [TBL] [Abstract][Full Text] [Related]
5. The effect of miconazole on ergosterol-less mutant of Candida albicans. Pesti M; Becher D; Bartsch G Acta Microbiol Hung; 1983; 30(1):25-9. PubMed ID: 6362313 [TBL] [Abstract][Full Text] [Related]
6. Decreased permeability of glycerol in an ergosterol-less mutant of Candida albicans. Pesti M; Novák R Acta Microbiol Hung; 1984; 31(2):81-4. PubMed ID: 6380195 [TBL] [Abstract][Full Text] [Related]
7. Fluorescence studies on the molecular action of amphotericin B on susceptible and resistant fungal cells. Haynes MP; Chong PL; Buckley HR; Pieringer RA Biochemistry; 1996 Jun; 35(24):7983-92. PubMed ID: 8672502 [TBL] [Abstract][Full Text] [Related]
8. Membrane sphingolipid-ergosterol interactions are important determinants of multidrug resistance in Candida albicans. Mukhopadhyay K; Prasad T; Saini P; Pucadyil TJ; Chattopadhyay A; Prasad R Antimicrob Agents Chemother; 2004 May; 48(5):1778-87. PubMed ID: 15105135 [TBL] [Abstract][Full Text] [Related]
9. In vitro activity of fluconazole on Candida albicans. Abecia LC; Arévalo JM; López MJ Microbiologia; 1996 Dec; 12(4):613-20. PubMed ID: 9018696 [TBL] [Abstract][Full Text] [Related]
11. Disruption of mitochondrial function in Candida albicans leads to reduced cellular ergosterol levels and elevated growth in the presence of amphotericin B. Geraghty P; Kavanagh K Arch Microbiol; 2003 Apr; 179(4):295-300. PubMed ID: 12640519 [TBL] [Abstract][Full Text] [Related]
12. Punicalagin triggers ergosterol biosynthesis disruption and cell cycle arrest in Cryptococcus gattii and Candida albicans : Action mechanisms of punicalagin against yeasts. Silva TC; de Ávila RI; Zara ALSA; Santos AS; Ataídes F; Freitas VAQ; Costa CR; Valadares MC; Silva MDRR Braz J Microbiol; 2020 Dec; 51(4):1719-1727. PubMed ID: 32856241 [TBL] [Abstract][Full Text] [Related]
13. Candida albicans zinc cluster protein Upc2p confers resistance to antifungal drugs and is an activator of ergosterol biosynthetic genes. MacPherson S; Akache B; Weber S; De Deken X; Raymond M; Turcotte B Antimicrob Agents Chemother; 2005 May; 49(5):1745-52. PubMed ID: 15855491 [TBL] [Abstract][Full Text] [Related]
14. The possible mechanism of rhapontigenin influencing antifungal activity on Candida albicans. Kim N; Kim JK; Hwang D; Lim YH Med Mycol; 2013 Jan; 51(1):45-52. PubMed ID: 22662760 [TBL] [Abstract][Full Text] [Related]
15. Morphogenic regulator EFG1 affects the drug susceptibilities of pathogenic Candida albicans. Prasad T; Hameed S; Manoharlal R; Biswas S; Mukhopadhyay CK; Goswami SK; Prasad R FEMS Yeast Res; 2010 Aug; 10(5):587-96. PubMed ID: 20491944 [TBL] [Abstract][Full Text] [Related]
16. In vitro studies on oxidative stress-independent, Ag nanoparticles-induced cell toxicity of Radhakrishnan VS; Dwivedi SP; Siddiqui MH; Prasad T Int J Nanomedicine; 2018; 13(T-NANO 2014 Abstracts):91-96. PubMed ID: 29593404 [TBL] [Abstract][Full Text] [Related]
17. In vivo interaction of trivalent chromium with yeast plasma membrane, as revealed by EPR spectroscopy. Pesti M; Gazdag Z; Belágyi J FEMS Microbiol Lett; 2000 Jan; 182(2):375-80. PubMed ID: 10620695 [TBL] [Abstract][Full Text] [Related]
18. Mechanistic Insights into Cellular and Molecular Targets of Zinc Oxide Quantum Dots (ZnO QDs) in Fungal Pathogen, Chand P; Narula K; Vs R; Sharma S; Kumari S; Mondal N; Singh SP; Mishra P; Prasad T ACS Infect Dis; 2024 Jun; 10(6):1914-1934. PubMed ID: 38831663 [TBL] [Abstract][Full Text] [Related]
19. Bafilomycin C1 exert antifungal effect through disturbing sterol biosynthesis in Candida albicans. Su H; Han L; Ding N; Guan P; Hu C; Huang X J Antibiot (Tokyo); 2018 Mar; 71(4):467-476. PubMed ID: 29391532 [TBL] [Abstract][Full Text] [Related]
20. Changes in the cellular composition of Candida albicans resistant to miconazole. Sharma S; Khuller GK Indian J Biochem Biophys; 1996 Oct; 33(5):420-4. PubMed ID: 9029825 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]