BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 22453920)

  • 21. Mutations in the molybdenum cofactor biosynthetic genes MOCS1, MOCS2, and GEPH.
    Reiss J; Johnson JL
    Hum Mutat; 2003 Jun; 21(6):569-76. PubMed ID: 12754701
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The dual role of ubiquitin-like protein Urm1 as a protein modifier and sulfur carrier.
    Wang F; Liu M; Qiu R; Ji C
    Protein Cell; 2011 Aug; 2(8):612-9. PubMed ID: 21904977
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Role of SufS Is Restricted to Fe-S Cluster Biosynthesis in Escherichia coli.
    Bühning M; Valleriani A; Leimkühler S
    Biochemistry; 2017 Apr; 56(14):1987-2000. PubMed ID: 28323419
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shared Sulfur Mobilization Routes for tRNA Thiolation and Molybdenum Cofactor Biosynthesis in Prokaryotes and Eukaryotes.
    Leimkühler S; Bühning M; Beilschmidt L
    Biomolecules; 2017 Jan; 7(1):. PubMed ID: 28098827
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Urm1: A Non-Canonical UBL.
    Termathe M; Leidel SA
    Biomolecules; 2021 Jan; 11(2):. PubMed ID: 33499055
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shared function and moonlighting proteins in molybdenum cofactor biosynthesis.
    Leimkühler S
    Biol Chem; 2017 Aug; 398(9):1009-1026. PubMed ID: 28284029
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of the NifS-like domain of ABA3 from Arabidopsis thaliana provides insight into the mechanism of molybdenum cofactor sulfuration.
    Heidenreich T; Wollers S; Mendel RR; Bittner F
    J Biol Chem; 2005 Feb; 280(6):4213-8. PubMed ID: 15561708
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The sulfur carrier protein TusA has a pleiotropic role in Escherichia coli that also affects molybdenum cofactor biosynthesis.
    Dahl JU; Radon C; Bühning M; Nimtz M; Leichert LI; Denis Y; Jourlin-Castelli C; Iobbi-Nivol C; Méjean V; Leimkühler S
    J Biol Chem; 2013 Feb; 288(8):5426-42. PubMed ID: 23281480
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of the C-terminal Gly-Gly motif of Escherichia coli MoaD, a molybdenum cofactor biosynthesis protein with a ubiquitin fold.
    Schmitz J; Wuebbens MM; Rajagopalan KV; Leimkühler S
    Biochemistry; 2007 Jan; 46(3):909-16. PubMed ID: 17223713
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Turkish case with molybdenum cofactor deficiency.
    Ichida K; Aydin HI; Hosoyamada M; Kalkanoglu HS; Dursun A; Ohno I; Coskun T; Tokatli A; Shibasaki T; Hosoya T
    Nucleosides Nucleotides Nucleic Acids; 2006; 25(9-11):1087-91. PubMed ID: 17065069
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Common thiolation mechanism in the biosynthesis of tRNA thiouridine and sulphur-containing cofactors.
    Shigi N; Sakaguchi Y; Asai S; Suzuki T; Watanabe K
    EMBO J; 2008 Dec; 27(24):3267-78. PubMed ID: 19037260
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of the ubiquitin-like protein Urm1 as a noncanonical lysine-directed protein modifier.
    Van der Veen AG; Schorpp K; Schlieker C; Buti L; Damon JR; Spooner E; Ploegh HL; Jentsch S
    Proc Natl Acad Sci U S A; 2011 Feb; 108(5):1763-70. PubMed ID: 21209336
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of Escherichia coli MoeB and its involvement in the activation of molybdopterin synthase for the biosynthesis of the molybdenum cofactor.
    Leimkühler S; Wuebbens MM; Rajagopalan KV
    J Biol Chem; 2001 Sep; 276(37):34695-701. PubMed ID: 11463785
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mild phenotype in Molybdenum cofactor deficiency: A new patient and review of the literature.
    Scelsa B; Gasperini S; Righini A; Iascone M; Brazzoduro VG; Veggiotti P
    Mol Genet Genomic Med; 2019 Jun; 7(6):e657. PubMed ID: 30900395
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elucidation of the dual role of Mycobacterial MoeZR in molybdenum cofactor biosynthesis and cysteine biosynthesis.
    Voss M; Nimtz M; Leimkühler S
    PLoS One; 2011; 6(11):e28170. PubMed ID: 22140533
    [TBL] [Abstract][Full Text] [Related]  

  • 36. C-Terminal glycine-gated radical initiation by GTP 3',8-cyclase in the molybdenum cofactor biosynthesis.
    Hover BM; Yokoyama K
    J Am Chem Soc; 2015 Mar; 137(9):3352-9. PubMed ID: 25697423
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molybdenum cofactor biology, evolution and deficiency.
    Mayr SJ; Mendel RR; Schwarz G
    Biochim Biophys Acta Mol Cell Res; 2021 Jan; 1868(1):118883. PubMed ID: 33017596
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Binding of sulfurated molybdenum cofactor to the C-terminal domain of ABA3 from Arabidopsis thaliana provides insight into the mechanism of molybdenum cofactor sulfuration.
    Wollers S; Heidenreich T; Zarepour M; Zachmann D; Kraft C; Zhao Y; Mendel RR; Bittner F
    J Biol Chem; 2008 Apr; 283(15):9642-50. PubMed ID: 18258600
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biosynthesis and Insertion of the Molybdenum Cofactor.
    Magalon A; Mendel RR
    EcoSal Plus; 2015; 6(2):. PubMed ID: 26435257
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A functional proteomics approach links the ubiquitin-related modifier Urm1 to a tRNA modification pathway.
    Schlieker CD; Van der Veen AG; Damon JR; Spooner E; Ploegh HL
    Proc Natl Acad Sci U S A; 2008 Nov; 105(47):18255-60. PubMed ID: 19017811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.