BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 22454058)

  • 41. Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations.
    Aartsma-Rus A; Fokkema I; Verschuuren J; Ginjaar I; van Deutekom J; van Ommen GJ; den Dunnen JT
    Hum Mutat; 2009 Mar; 30(3):293-9. PubMed ID: 19156838
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Antisense-mediated exon skipping to generate soluble receptors.
    Yilmaz-Elis AS; Verbeek JS
    Methods Mol Biol; 2012; 867():209-20. PubMed ID: 22454064
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Overview on DMD exon skipping.
    Aartsma-Rus A
    Methods Mol Biol; 2012; 867():97-116. PubMed ID: 22454057
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modulation of in vitro splicing of the upstream intron by modifying an intra-exon sequence which is deleted from the dystrophin gene in dystrophin Kobe.
    Takeshima Y; Nishio H; Sakamoto H; Nakamura H; Matsuo M
    J Clin Invest; 1995 Feb; 95(2):515-20. PubMed ID: 7860733
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Design of 2'-O-Me RNA/ENA chimera oligonucleotides to induce exon skipping in dystrophin pre-mRNA.
    Takagi M; Yagi M; Ishibashi K; Takeshima Y; Surono A; Matsuo M; Koizumi M
    Nucleic Acids Symp Ser (Oxf); 2004; (48):297-8. PubMed ID: 17150596
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Antisense oligonuclotides with oxetane-constrained cytidine enhance heteroduplex stability, and elicit satisfactory RNase H response as well as showing improved resistance to both exo and endonucleases.
    Pradeepkumar PI; Amirkhanov NV; Chattopadhyaya J
    Org Biomol Chem; 2003 Jan; 1(1):81-92. PubMed ID: 12929393
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Making antisense of splicing.
    Garcia-Blanco MA
    Curr Opin Mol Ther; 2005 Oct; 7(5):476-82. PubMed ID: 16248283
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Design of Bifunctional Antisense Oligonucleotides for Exon Inclusion.
    Zhou H
    Methods Mol Biol; 2022; 2434():53-62. PubMed ID: 35213009
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Intraperitoneal administration of phosphorothioate antisense oligodeoxynucleotide against splicing enhancer sequence induced exon skipping in dystrophin mRNA expressed in mdx skeletal muscle.
    Takeshima Y; Yagi M; Wada H; Matsuo M
    Brain Dev; 2005 Oct; 27(7):488-93. PubMed ID: 16198206
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Opportunities and challenges for antisense oligonucleotide therapies.
    Kuijper EC; Bergsma AJ; Pijnappel WWMP; Aartsma-Rus A
    J Inherit Metab Dis; 2021 Jan; 44(1):72-87. PubMed ID: 32391605
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of hprt splicing mutations induced by the ultimate carcinogenic metabolite of benzo[a]pyrene in Chinese hamster V-79 cells.
    Hennig EE; Conney AH; Wei SJ
    Cancer Res; 1995 Apr; 55(7):1550-8. PubMed ID: 7882364
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Antisense-mediated exon skipping to reframe transcripts.
    Turczynski S; Titeux M; Pironon N; Hovnanian A
    Methods Mol Biol; 2012; 867():221-38. PubMed ID: 22454065
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Splicing by exon exclusion impaired by artificial box c/d RNA targeted to branch-point adenosine.
    Semenov DV; Vratskih OV; Kuligina EV; Richter VA
    Ann N Y Acad Sci; 2008 Aug; 1137():119-24. PubMed ID: 18837934
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Antisense oligonucleotide-induced exon skipping restores dystrophin expression in vitro in a canine model of DMD.
    McClorey G; Moulton HM; Iversen PL; Fletcher S; Wilton SD
    Gene Ther; 2006 Oct; 13(19):1373-81. PubMed ID: 16724091
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Translational and regulatory challenges for exon skipping therapies.
    Aartsma-Rus A; Ferlini A; Goemans N; Pasmooij AM; Wells DJ; Bushby K; Vroom E; Balabanov P
    Hum Gene Ther; 2014 Oct; 25(10):885-92. PubMed ID: 25184444
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Overview of alternative oligonucleotide chemistries for exon skipping.
    Saleh AF; Arzumanov AA; Gait MJ
    Methods Mol Biol; 2012; 867():365-78. PubMed ID: 22454073
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Exploring Splicing-Switching Molecules For Seckel Syndrome Therapy.
    Scalet D; Balestra D; Rohban S; Bovolenta M; Perrone D; Bernardi F; Campaner S; Pinotti M
    Biochim Biophys Acta Mol Basis Dis; 2017 Jan; 1863(1):15-20. PubMed ID: 27639833
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identifying Suitable Target Regions and Analyzing Off-Target Effects of Therapeutic Oligonucleotides.
    Pedersen L; Hagedorn PH; Koch T
    Methods Mol Biol; 2019; 2036():261-282. PubMed ID: 31410803
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Gapmer Antisense Oligonucleotides Containing 2',3'-Dideoxy-2'-fluoro-3'-C-hydroxymethyl-β-d-lyxofuranosyl Nucleotides Display Site-Specific RNase H Cleavage and Induce Gene Silencing.
    Danielsen MB; Lou C; Lisowiec-Wachnicka J; Pasternak A; Jørgensen PT; Wengel J
    Chemistry; 2020 Jan; 26(6):1368-1379. PubMed ID: 31682037
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Induction of cryptic pre-mRNA splice-switching by antisense oligonucleotides.
    Ham KA; Keegan NP; McIntosh CS; Aung-Htut MT; Zaw K; Greer K; Fletcher S; Wilton SD
    Sci Rep; 2021 Jul; 11(1):15137. PubMed ID: 34302060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.