These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 22454084)

  • 21. Synthesis of ZnO and Zn nanoparticles in microwave plasma and their deposition on glass slides.
    Irzh A; Genish I; Klein L; Solovyov LA; Gedanken A
    Langmuir; 2010 Apr; 26(8):5976-84. PubMed ID: 20337410
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microwave-assisted synthesis of sensitive silver substrate for surface-enhanced Raman scattering spectroscopy.
    Xia L; Wang H; Wang J; Gong K; Jia Y; Zhang H; Sun M
    J Chem Phys; 2008 Oct; 129(13):134703. PubMed ID: 19045112
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of nano/micro zinc oxide rods and arrays by thermal evaporation approach on cylindrical shape substrate.
    Zhang Y; Wang L; Liu X; Yan Y; Chen C; Zhu J
    J Phys Chem B; 2005 Jul; 109(27):13091-3. PubMed ID: 16852628
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In situ preparation of silver nanocomposites on cellulosic fibers--microwave vs. conventional heating.
    Breitwieser D; Moghaddam MM; Spirk S; Baghbanzadeh M; Pivec T; Fasl H; Ribitsch V; Kappe CO
    Carbohydr Polym; 2013 Apr; 94(1):677-86. PubMed ID: 23544590
    [TBL] [Abstract][Full Text] [Related]  

  • 25. First preparation of nanocrystalline zinc silicate by chemical vapor synthesis using an organometallic single-source precursor.
    Roy A; Polarz S; Rabe S; Rellinghaus B; Zähres H; Kruis FE; Driess M
    Chemistry; 2004 Mar; 10(6):1565-75. PubMed ID: 15034900
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microwave-enhanced reaction rates for nanoparticle synthesis.
    Gerbec JA; Magana D; Washington A; Strouse GF
    J Am Chem Soc; 2005 Nov; 127(45):15791-800. PubMed ID: 16277522
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microwave effect in the fast synthesis of microporous materials: which stage between nucleation and crystal growth is accelerated by microwave irradiation?
    Jhung SH; Jin T; Hwang YK; Chang JS
    Chemistry; 2007; 13(16):4410-7. PubMed ID: 17407114
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formation mechanisms of gold-zinc oxide hexagonal nanopyramids by heterogeneous nucleation using microwave synthesis.
    Herring NP; AbouZeid K; Mohamed MB; Pinsk J; El-Shall MS
    Langmuir; 2011 Dec; 27(24):15146-54. PubMed ID: 21819068
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microwave synthesis of SAPO-11 and AlPO-11: aspects of reactor engineering.
    Gharibeh M; Tompsett GA; Conner WC; Yngvesson KS
    Chemphyschem; 2008 Dec; 9(17):2580-91. PubMed ID: 19034925
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultra-fast microwave-assisted hydrothermal synthesis of long vertically aligned ZnO nanowires for dye-sensitized solar cell application.
    Mahpeykar SM; Koohsorkhi J; Ghafoori-Fard H
    Nanotechnology; 2012 Apr; 23(16):165602. PubMed ID: 22460691
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly stable precursor solution containing ZnO nanoparticles for the preparation of ZnO thin film transistors.
    Huang HC; Hsieh TE
    Nanotechnology; 2010 Jul; 21(29):295707. PubMed ID: 20601767
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In situ SAXS/WAXS of zeolite microwave synthesis: NaY, NaA, and beta zeolites.
    Panzarella B; Tompsett G; Conner WC; Jones K
    Chemphyschem; 2007 Feb; 8(3):357-69. PubMed ID: 17253593
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solution-processed flexible ZnO transparent thin-film transistors with a polymer gate dielectric fabricated by microwave heating.
    Yang C; Hong K; Jang J; Chung DS; An TK; Choi WS; Park CE
    Nanotechnology; 2009 Nov; 20(46):465201. PubMed ID: 19847029
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrafine ZnO nanoparticles/nanowires synthesized on a flexible and transparent substrate: formation, water molecules, and surface defect effects.
    Wu JM; Chen YR; Kao WT
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):487-94. PubMed ID: 24283941
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of microwave radiation on the growth of gold nanoparticles and microporous zincophosphates in a reverse micellar system.
    Doolittle JW; Dutta PK
    Langmuir; 2006 May; 22(10):4825-31. PubMed ID: 16649802
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Spectroscopic study on CdS nanoparticles prepared by microwave irradiation].
    Cheng WQ; Liu D; Yan ZY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1348-52. PubMed ID: 18800720
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microwave-assisted synthesis of metallic nanostructures in solution.
    Tsuji M; Hashimoto M; Nishizawa Y; Kubokawa M; Tsuji T
    Chemistry; 2005 Jan; 11(2):440-52. PubMed ID: 15515072
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Review of Microwave Synthesis of Zinc Oxide Nanomaterials: Reactants, Process Parameters and Morphoslogies.
    Wojnarowicz J; Chudoba T; Lojkowski W
    Nanomaterials (Basel); 2020 May; 10(6):. PubMed ID: 32486522
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Facile synthesis of novel photoluminescent ZnO micro- and nanopencils.
    Pol VG; Calderon-Moreno JM; Thiyagarajan P
    Langmuir; 2008 Dec; 24(23):13640-5. PubMed ID: 18986186
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of Microwave Radiation Power on the Size of Aggregates of ZnO NPs Prepared Using Microwave Solvothermal Synthesis.
    Wojnarowicz J; Chudoba T; Gierlotka S; Lojkowski W
    Nanomaterials (Basel); 2018 May; 8(5):. PubMed ID: 29783651
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.