These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 22454084)

  • 41. Hydrothermal synthesis of ZnO nanorods: a statistical determination of the significant parameters in view of reducing the diameter.
    Elen K; Van den Rul H; Hardy A; Van Bael MK; D'Haen J; Peeters R; Franco D; Mullens J
    Nanotechnology; 2009 Feb; 20(5):055608. PubMed ID: 19417355
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fine-tuning the synthesis of ZnO nanostructures by an alcohol thermal process.
    Cheng JP; Zhang XB; Tao XY; Lu HM; Luo ZQ; Liu F
    J Phys Chem B; 2006 Jun; 110(21):10348-53. PubMed ID: 16722738
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis of CdTe nanocrystals through program process of microwave irradiation.
    He Y; Lu HT; Sai LM; Lai WY; Fan QL; Wang LH; Huang W
    J Phys Chem B; 2006 Jul; 110(27):13352-6. PubMed ID: 16821853
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection.
    Kim D; Jeong S; Moon J
    Nanotechnology; 2006 Aug; 17(16):4019-24. PubMed ID: 21727531
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Zn(II)-PEG 300 globules as soft template for the synthesis of hexagonal ZnO micronuts by the hydrothermal reaction method.
    Shi X; Pan L; Chen S; Xiao Y; Liu Q; Yuan L; Sun J; Cai L
    Langmuir; 2009 May; 25(10):5940-8. PubMed ID: 19388644
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Parameters affecting the microwave-specific acceleration of a chemical reaction.
    Chen PK; Rosana MR; Dudley GB; Stiegman AE
    J Org Chem; 2014 Aug; 79(16):7425-36. PubMed ID: 25050921
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Zinc glycolate: a precursor to ZnO.
    Das J; Evans IR; Khushalani D
    Inorg Chem; 2009 Apr; 48(8):3508-10. PubMed ID: 19323454
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.
    Kwon SG; Hyeon T
    Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Investigation of primary crystallite sizes in nanocrystalline ZnS powders: comparison of microwave assisted with conventional synthesis routes.
    Rath T; Kunert B; Resel R; Fritz-Popovski G; Saf R; Trimmel G
    Inorg Chem; 2008 Apr; 47(8):3014-22. PubMed ID: 18351732
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microwave-Epoxide-Assisted Hydrothermal Synthesis of the CuO/ZnO Heterojunction: a Highly Versatile Route to Develop H
    Nadargi DY; Tamboli MS; Patil SS; Dateer RB; Mulla IS; Choi H; Suryavanshi SS
    ACS Omega; 2020 Apr; 5(15):8587-8595. PubMed ID: 32337421
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microstructure control of Zn/ZnO core/shell nanoparticles and their temperature-dependent blue emissions.
    Zeng H; Li Z; Cai W; Cao B; Liu P; Yang S
    J Phys Chem B; 2007 Dec; 111(51):14311-7. PubMed ID: 18052150
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Controlled synthesis of ZnO from nanospheres to micro-rods and its gas sensing studies.
    Navale SC; Gosavi SW; Mulla IS
    Talanta; 2008 Jun; 75(5):1315-9. PubMed ID: 18585218
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Continuous system with microwave irradiation to obtain alkyl benzoates.
    Cáceres A; Jaimes M; Chávez G; Bravo B; Ysambertt F; Márquez N
    Talanta; 2005 Dec; 68(2):359-64. PubMed ID: 18970330
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hydrothermal synthesis of ZnO microspheres and hexagonal microrods with sheetlike and platelike nanostructures.
    Kuo CL; Kuo TJ; Huang MH
    J Phys Chem B; 2005 Nov; 109(43):20115-21. PubMed ID: 16853600
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Micro/milliflow processing with selective catalyst microwave heating in the Cu-catalyzed Ullmann etherification reaction: a μ(2)-process.
    Benaskar F; Patil NG; Rebrov EV; Ben-Abdelmoumen A; Meuldijk J; Hulshof LA; Hessel V; Schouten JC
    ChemSusChem; 2013 Feb; 6(2):353-66. PubMed ID: 23193030
    [TBL] [Abstract][Full Text] [Related]  

  • 56. New insights into selective heterogeneous nucleation of metal nanoparticles on oxides by microwave-assisted reduction: rapid synthesis of high-activity supported catalysts.
    Anumol EA; Kundu P; Deshpande PA; Madras G; Ravishankar N
    ACS Nano; 2011 Oct; 5(10):8049-61. PubMed ID: 21888416
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fast synthesis of ZnO nanostructures by laser-induced decomposition of zinc acetylacetonate.
    Fauteux C; Longtin R; Pegna J; Therriault D
    Inorg Chem; 2007 Dec; 46(26):11036-47. PubMed ID: 18027927
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dielectric properties and carbothermic reduction of zinc oxide and zinc ferrite by microwave heating.
    Omran M; Fabritius T; Heikkinen EP; Chen G
    R Soc Open Sci; 2017 Sep; 4(9):170710. PubMed ID: 28989772
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microwave-assisted nonaqueous sol-gel deposition of different spinel ferrites and barium titanate perovskite thin films.
    Kubli M; Luo L; Bilecka I; Niederberger M
    Chimia (Aarau); 2010; 64(3):170-2. PubMed ID: 21140913
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Clewlike ZnV2O4 hollow spheres: nonaqueous sol-gel synthesis, formation mechanism, and lithium storage properties.
    Xiao L; Zhao Y; Yin J; Zhang L
    Chemistry; 2009 Sep; 15(37):9442-50. PubMed ID: 19672904
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.