These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Identification of the function of gene lndM2 encoding a bifunctional oxygenase-reductase involved in the biosynthesis of the antitumor antibiotic landomycin E by Streptomyces globisporus 1912 supports the originally assigned structure for landomycinone. Zhu L; Ostash B; Rix U; Nur-E-Alam M; Mayers A; Luzhetskyy A; Mendez C; Salas JA; Bechthold A; Fedorenko V; Rohr J J Org Chem; 2005 Jan; 70(2):631-8. PubMed ID: 15651811 [TBL] [Abstract][Full Text] [Related]
3. Generation of novel landomycins M and O through targeted gene disruption. Luzhetskyy A; Zhu L; Gibson M; Fedoryshyn M; Dürr C; Hofmann C; Hoffmeister D; Ostash B; Mattingly C; Adams V; Fedorenko V; Rohr J; Bechthold A Chembiochem; 2005 Apr; 6(4):675-8. PubMed ID: 15812784 [TBL] [Abstract][Full Text] [Related]
4. LanV, a bifunctional enzyme: aromatase and ketoreductase during landomycin A biosynthesis. Mayer A; Taguchi T; Linnenbrink A; Hofmann C; Luzhetskyy A; Bechthold A Chembiochem; 2005 Dec; 6(12):2312-5. PubMed ID: 16283688 [TBL] [Abstract][Full Text] [Related]
5. LanGT2 Catalyzes the First Glycosylation Step during landomycin A biosynthesis. Luzhetskyy A; Taguchi T; Fedoryshyn M; Dürr C; Wohlert SE; Novikov V; Bechthold A Chembiochem; 2005 Aug; 6(8):1406-10. PubMed ID: 15977274 [TBL] [Abstract][Full Text] [Related]
6. [Identification of key residues in the catalytic center JadH involved in binding substrates or catalysis of jadomycin biosynthesis]. Peng X; Ji J; Zhang X; Fan K; Jin L; Zhang Y; Yang K Sheng Wu Gong Cheng Xue Bao; 2012 Aug; 28(8):950-8. PubMed ID: 23185895 [TBL] [Abstract][Full Text] [Related]
7. Structural and functional analysis of angucycline C-6 ketoreductase LanV involved in landomycin biosynthesis. Paananen P; Patrikainen P; Kallio P; Mäntsälä P; Niemi J; Niiranen L; Metsä-Ketelä M Biochemistry; 2013 Aug; 52(31):5304-14. PubMed ID: 23848284 [TBL] [Abstract][Full Text] [Related]
8. An unusual dehydratase acting on glycerate and a ketoreducatse stereoselectively reducing α-ketone in polyketide starter unit biosynthesis. He HY; Yuan H; Tang MC; Tang GL Angew Chem Int Ed Engl; 2014 Oct; 53(42):11315-9. PubMed ID: 25160004 [TBL] [Abstract][Full Text] [Related]
9. Neocarzinostatin naphthoate synthase: an unique iterative type I PKS from neocarzinostatin producer Streptomyces carzinostaticus. Sthapit B; Oh TJ; Lamichhane R; Liou K; Lee HC; Kim CG; Sohng JK FEBS Lett; 2004 May; 566(1-3):201-6. PubMed ID: 15147895 [TBL] [Abstract][Full Text] [Related]
10. Elucidation of oxygenation steps during oviedomycin biosynthesis and generation of derivatives with increased antitumor activity. Lombó F; Abdelfattah MS; Braña AF; Salas JA; Rohr J; Méndez C Chembiochem; 2009 Jan; 10(2):296-303. PubMed ID: 18988223 [TBL] [Abstract][Full Text] [Related]
11. sanN encoding a dehydrogenase is essential for Nikkomycin biosynthesis in Streptomyces ansochromogenes. Ling HB; Wang GJ; Li JE; Tan HR J Microbiol Biotechnol; 2008 Mar; 18(3):397-403. PubMed ID: 18388454 [TBL] [Abstract][Full Text] [Related]
12. [Screening and characteristics of regulators of landomycin E biosynthesis in Streptomyces globisporus]. Matseliukh BP; Tymoshenko SH; Bambura OI; Kopeĭko OP Mikrobiol Z; 2011; 73(5):16-20. PubMed ID: 22164695 [TBL] [Abstract][Full Text] [Related]
13. A heptaketide naphthaldehyde produced by a polyketide synthase from Nectria haematococca. Awakawa T; Kaji T; Wakimoto T; Abe I Bioorg Med Chem Lett; 2012 Jul; 22(13):4338-40. PubMed ID: 22633689 [TBL] [Abstract][Full Text] [Related]
14. Identification of JadG as the B ring opening oxygenase catalyzing the oxidative C-C bond cleavage reaction in jadomycin biosynthesis. Fan K; Pan G; Peng X; Zheng J; Gao W; Wang J; Wang W; Li Y; Yang K Chem Biol; 2012 Nov; 19(11):1381-90. PubMed ID: 23177193 [TBL] [Abstract][Full Text] [Related]
15. Function of lanI in regulation of landomycin A biosynthesis in Streptomyces cyanogenus S136 and cross-complementation studies with Streptomyces antibiotic regulatory proteins encoding genes. Rebets Y; Dutko L; Ostash B; Luzhetskyy A; Kulachkovskyy O; Yamaguchi T; Nakamura T; Bechthold A; Fedorenko V Arch Microbiol; 2008 Feb; 189(2):111-20. PubMed ID: 17786405 [TBL] [Abstract][Full Text] [Related]
16. Characterization of tailoring genes involved in the modification of geldanamycin polyketide in Streptomyces hygroscopicus JCM4427. Shin JC; Na Z; Lee DH; Kim WC; Lee K; Shen YM; Paik SG; Hong YS; Lee JJ J Microbiol Biotechnol; 2008 Jun; 18(6):1101-8. PubMed ID: 18600054 [TBL] [Abstract][Full Text] [Related]
17. Post-PKS tailoring steps of the spiramycin macrolactone ring in Streptomyces ambofaciens. Nguyen HC; Darbon E; Thai R; Pernodet JL; Lautru S Antimicrob Agents Chemother; 2013 Aug; 57(8):3836-42. PubMed ID: 23716060 [TBL] [Abstract][Full Text] [Related]
18. Characterization of FK506 biosynthetic intermediates involved in post-PKS elaboration. Ban YH; Shinde PB; Hwang JY; Song MC; Kim DH; Lim SK; Sohng JK; Yoon YJ J Nat Prod; 2013 Jun; 76(6):1091-8. PubMed ID: 23706030 [TBL] [Abstract][Full Text] [Related]
19. Tailoring enzymes acting on carrier protein-tethered substrates in natural product biosynthesis. Lin S; Huang T; Shen B Methods Enzymol; 2012; 516():321-43. PubMed ID: 23034236 [TBL] [Abstract][Full Text] [Related]
20. Heterologous cross-expression of oxygenase and glycosyltransferase genes in streptomycetes, producing angucyclic antibiotics. Kobylyanskyy A; Ostash B; Fedorenko V Tsitol Genet; 2009; 43(3):55-62. PubMed ID: 19938638 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]