BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 22454102)

  • 1. Recognizing and reversing the immunosuppressive tumor microenvironment of head and neck cancer.
    Tong CC; Kao J; Sikora AG
    Immunol Res; 2012 Dec; 54(1-3):266-74. PubMed ID: 22454102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor microenvironment modulation enhances immunologic benefit of chemoradiotherapy.
    Hanoteau A; Newton JM; Krupar R; Huang C; Liu HC; Gaspero A; Gartrell RD; Saenger YM; Hart TD; Santegoets SJ; Laoui D; Spanos C; Parikh F; Jayaraman P; Zhang B; Van der Burg SH; Van Ginderachter JA; Melief CJM; Sikora AG
    J Immunother Cancer; 2019 Jan; 7(1):10. PubMed ID: 30646957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the tumor immune microenvironment in human papillomavirus-positive and -negative head and neck squamous cell carcinomas.
    Succaria F; Kvistborg P; Stein JE; Engle EL; McMiller TL; Rooper LM; Thompson E; Berger AE; van den Brekel M; Zuur CL; Haanen J; Topalian SL; Taube JM
    Cancer Immunol Immunother; 2021 May; 70(5):1227-1237. PubMed ID: 33125511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumor immune microenvironment in head and neck cancers.
    Chen SMY; Krinsky AL; Woolaver RA; Wang X; Chen Z; Wang JH
    Mol Carcinog; 2020 Jul; 59(7):766-774. PubMed ID: 32017286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immune-checkpoint molecules on regulatory T-cells as a potential therapeutic target in head and neck squamous cell cancers.
    Suzuki S; Ogawa T; Sano R; Takahara T; Inukai D; Akira S; Tsuchida H; Yoshikawa K; Ueda R; Tsuzuki T
    Cancer Sci; 2020 Jun; 111(6):1943-1957. PubMed ID: 32304268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of tumor-associated T-lymphocyte subsets and immune checkpoint molecules in head and neck squamous cell carcinoma.
    Lechner A; Schlößer H; Rothschild SI; Thelen M; Reuter S; Zentis P; Shimabukuro-Vornhagen A; Theurich S; Wennhold K; Garcia-Marquez M; Tharun L; Quaas A; Schauss A; Isensee J; Hucho T; Huebbers C; von Bergwelt-Baildon M; Beutner D
    Oncotarget; 2017 Jul; 8(27):44418-44433. PubMed ID: 28574843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The complement receptors CD46, CD55 and CD59 are regulated by the tumour microenvironment of head and neck cancer to facilitate escape of complement attack.
    Kesselring R; Thiel A; Pries R; Fichtner-Feigl S; Brunner S; Seidel P; Bruchhage KL; Wollenberg B
    Eur J Cancer; 2014 Aug; 50(12):2152-61. PubMed ID: 24915776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immune Modulation of Head and Neck Squamous Cell Carcinoma and the Tumor Microenvironment by Conventional Therapeutics.
    Miyauchi S; Kim SS; Pang J; Gold KA; Gutkind JS; Califano JA; Mell LK; Cohen EEW; Sharabi AB
    Clin Cancer Res; 2019 Jul; 25(14):4211-4223. PubMed ID: 30814108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome analysis reveals the link between lncRNA-mRNA co-expression network and tumor immune microenvironment and overall survival in head and neck squamous cell carcinoma.
    Zhong Z; Hong M; Chen X; Xi Y; Xu Y; Kong D; Deng J; Li Y; Hu R; Sun C; Liang J
    BMC Med Genomics; 2020 Mar; 13(1):57. PubMed ID: 32228580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PD-1-expressing tumor-infiltrating T cells are a favorable prognostic biomarker in HPV-associated head and neck cancer.
    Badoual C; Hans S; Merillon N; Van Ryswick C; Ravel P; Benhamouda N; Levionnois E; Nizard M; Si-Mohamed A; Besnier N; Gey A; Rotem-Yehudar R; Pere H; Tran T; Guerin CL; Chauvat A; Dransart E; Alanio C; Albert S; Barry B; Sandoval F; Quintin-Colonna F; Bruneval P; Fridman WH; Lemoine FM; Oudard S; Johannes L; Olive D; Brasnu D; Tartour E
    Cancer Res; 2013 Jan; 73(1):128-38. PubMed ID: 23135914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interplay between HPV and host immunity in head and neck squamous cell carcinoma.
    Andersen AS; Koldjaer Sølling AS; Ovesen T; Rusan M
    Int J Cancer; 2014 Jun; 134(12):2755-63. PubMed ID: 23913554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immuno-oncology in head and neck squamous cell cancers: News from clinical trials, emerging predictive factors and unmet needs.
    Cavalieri S; Rivoltini L; Bergamini C; Locati LD; Licitra L; Bossi P
    Cancer Treat Rev; 2018 Apr; 65():78-86. PubMed ID: 29574334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immune Escape Mechanisms and Their Clinical Relevance in Head and Neck Squamous Cell Carcinoma.
    Seliger B; Massa C; Yang B; Bethmann D; Kappler M; Eckert AW; Wickenhauser C
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32987799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peritumoral cuffing by T-cell tumor-infiltrating lymphocytes distinguishes HPV-related oropharyngeal squamous cell carcinoma from oral cavity squamous cell carcinoma.
    Poropatich K; Hernandez D; Fontanarosa J; Brown K; Woloschak G; Paintal A; Raparia K; Samant S
    J Oral Pathol Med; 2017 Nov; 46(10):972-978. PubMed ID: 28632936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cancer-associated fibroblasts promote an immunosuppressive microenvironment through the induction and accumulation of protumoral macrophages.
    Takahashi H; Sakakura K; Kudo T; Toyoda M; Kaira K; Oyama T; Chikamatsu K
    Oncotarget; 2017 Jan; 8(5):8633-8647. PubMed ID: 28052009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving head and neck cancer therapies by immunomodulation of the tumour microenvironment.
    Ruffin AT; Li H; Vujanovic L; Zandberg DP; Ferris RL; Bruno TC
    Nat Rev Cancer; 2023 Mar; 23(3):173-188. PubMed ID: 36456755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peripheral blood monocyte and T-lymphocyte activation levels at diagnosis predict long-term survival in head and neck squamous cell carcinoma patients.
    Aarstad HJ; Vintermyr OK; Ulvestad E; Aarstad HH; Kross KW; Heimdal JH
    APMIS; 2015 Apr; 123(4):305-14. PubMed ID: 25801083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human Head and Neck Squamous Cell Carcinoma-Associated Semaphorin 4D Induces Expansion of Myeloid-Derived Suppressor Cells.
    Younis RH; Han KL; Webb TJ
    J Immunol; 2016 Feb; 196(3):1419-29. PubMed ID: 26740106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The involvement of RCAS1 in creating a suppressive tumor microenvironment in patients with pharyngeal squamous cell carcinoma].
    Dutsch-Wicherek M; Windorbska W; Jóźwicki W; Kaźmierczak H
    Otolaryngol Pol; 2012 Sep; 66(4 Suppl):49-59. PubMed ID: 23164108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. OX40 signaling in head and neck squamous cell carcinoma: Overcoming immunosuppression in the tumor microenvironment.
    Bell RB; Leidner RS; Crittenden MR; Curti BD; Feng Z; Montler R; Gough MJ; Fox BA; Weinberg AD; Urba WJ
    Oral Oncol; 2016 Jan; 52():1-10. PubMed ID: 26614363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.