These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 22454284)
1. Heparin interacting protein mediated assembly of nano-fibrous hydrogel scaffolds for guided stem cell differentiation. Tan H; Zhou Q; Qi H; Zhu D; Ma X; Xiong D Macromol Biosci; 2012 May; 12(5):621-7. PubMed ID: 22454284 [TBL] [Abstract][Full Text] [Related]
2. Injectable nanohybrid scaffold for biopharmaceuticals delivery and soft tissue engineering. Tan H; Shen Q; Jia X; Yuan Z; Xiong D Macromol Rapid Commun; 2012 Dec; 33(23):2015-22. PubMed ID: 22941907 [TBL] [Abstract][Full Text] [Related]
3. Preparation of TGF-β1-conjugated biodegradable pluronic F127 hydrogel and its application with adipose-derived stem cells. Jung HH; Park K; Han DK J Control Release; 2010 Oct; 147(1):84-91. PubMed ID: 20599451 [TBL] [Abstract][Full Text] [Related]
4. Heparin-hyaluronic acid hydrogel in support of cellular activities of 3D encapsulated adipose derived stem cells. Gwon K; Kim E; Tae G Acta Biomater; 2017 Feb; 49():284-295. PubMed ID: 27919839 [TBL] [Abstract][Full Text] [Related]
6. Effects of cross-linking molecular weights in a hyaluronic acid-poly(ethylene oxide) hydrogel network on its properties. Noh I; Kim GW; Choi YJ; Kim MS; Park Y; Lee KB; Kim IS; Hwang SJ; Tae G Biomed Mater; 2006 Sep; 1(3):116-23. PubMed ID: 18458391 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional hydrogel model using adipose-derived stem cells for vocal fold augmentation. Park H; Karajanagi S; Wolak K; Aanestad J; Daheron L; Kobler JB; Lopez-Guerra G; Heaton JT; Langer RS; Zeitels SM Tissue Eng Part A; 2010 Feb; 16(2):535-43. PubMed ID: 19728785 [TBL] [Abstract][Full Text] [Related]
8. Adipose-derived stem cells on hyaluronic acid-derived scaffold: a new horizon in bioengineered cornea. Espandar L; Bunnell B; Wang GY; Gregory P; McBride C; Moshirfar M Arch Ophthalmol; 2012 Feb; 130(2):202-8. PubMed ID: 22332213 [TBL] [Abstract][Full Text] [Related]
9. Nano-Fibrous Biopolymer Hydrogels via Biological Conjugation for Osteogenesis. Chen H; Xing X; Jia Y; Mao J; Zhang Z; Tan H J Nanosci Nanotechnol; 2016 Jun; 16(6):5562-8. PubMed ID: 27427597 [TBL] [Abstract][Full Text] [Related]
10. Surface modification with fibrin/hyaluronic acid hydrogel on solid-free form-based scaffolds followed by BMP-2 loading to enhance bone regeneration. Kang SW; Kim JS; Park KS; Cha BH; Shim JH; Kim JY; Cho DW; Rhie JW; Lee SH Bone; 2011 Feb; 48(2):298-306. PubMed ID: 20870047 [TBL] [Abstract][Full Text] [Related]
11. The mechanics of hyaluronic acid/adipic acid dihydrazide hydrogel: towards developing a vessel for delivery of preadipocytes to native tissues. Shoham N; Sasson AL; Lin FH; Benayahu D; Haj-Ali R; Gefen A J Mech Behav Biomed Mater; 2013 Dec; 28():320-31. PubMed ID: 24021174 [TBL] [Abstract][Full Text] [Related]
12. Production of a composite hyaluronic acid/gelatin blood plasma gel for hydrogel-based adipose tissue engineering applications. Korurer E; Kenar H; Doger E; Karaoz E J Biomed Mater Res A; 2014 Jul; 102(7):2220-9. PubMed ID: 23913820 [TBL] [Abstract][Full Text] [Related]
13. Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds. Leach JB; Schmidt CE Biomaterials; 2005 Jan; 26(2):125-35. PubMed ID: 15207459 [TBL] [Abstract][Full Text] [Related]
14. Encapsulation and 3D culture of human adipose-derived stem cells in an in-situ crosslinked hybrid hydrogel composed of PEG-based hyperbranched copolymer and hyaluronic acid. Hassan W; Dong Y; Wang W Stem Cell Res Ther; 2013 Mar; 4(2):32. PubMed ID: 23517589 [TBL] [Abstract][Full Text] [Related]
15. Gelation characteristics and osteogenic differentiation of stromal cells in inert hydrolytically degradable micellar polyethylene glycol hydrogels. Moeinzadeh S; Barati D; He X; Jabbari E Biomacromolecules; 2012 Jul; 13(7):2073-86. PubMed ID: 22642902 [TBL] [Abstract][Full Text] [Related]
16. Cytocompatible in situ forming chitosan/hyaluronan hydrogels via a metal-free click chemistry for soft tissue engineering. Fan M; Ma Y; Mao J; Zhang Z; Tan H Acta Biomater; 2015 Jul; 20():60-68. PubMed ID: 25839124 [TBL] [Abstract][Full Text] [Related]
17. An injectable extracellular matrix for the reconstruction of epidural fat and the prevention of epidural fibrosis. Lin CY; Liu TY; Chen MH; Sun JS; Chen MH Biomed Mater; 2016 Jun; 11(3):035010. PubMed ID: 27271471 [TBL] [Abstract][Full Text] [Related]
18. Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment. Toh WS; Lim TC; Kurisawa M; Spector M Biomaterials; 2012 May; 33(15):3835-45. PubMed ID: 22369963 [TBL] [Abstract][Full Text] [Related]
19. Engineering articular cartilage with spatially-varying matrix composition and mechanical properties from a single stem cell population using a multi-layered hydrogel. Nguyen LH; Kudva AK; Saxena NS; Roy K Biomaterials; 2011 Oct; 32(29):6946-52. PubMed ID: 21723599 [TBL] [Abstract][Full Text] [Related]
20. Catechol-Functionalized Hyaluronic Acid Hydrogels Enhance Angiogenesis and Osteogenesis of Human Adipose-Derived Stem Cells in Critical Tissue Defects. Park HJ; Jin Y; Shin J; Yang K; Lee C; Yang HS; Cho SW Biomacromolecules; 2016 Jun; 17(6):1939-48. PubMed ID: 27112904 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]