These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
334 related articles for article (PubMed ID: 22454455)
41. Early infection response of fungal biotroph Zou K; Li Y; Zhang W; Jia Y; Wang Y; Ma Y; Lv X; Xuan Y; Du W Front Plant Sci; 2022; 13():970897. PubMed ID: 36161006 [TBL] [Abstract][Full Text] [Related]
43. A Trojan Horse Approach Using Ustilago maydis to Study Apoplastic Maize (Zea mays) Peptides In Situ. Kutzner L; van der Linde K Methods Mol Biol; 2024; 2731():115-132. PubMed ID: 38019430 [TBL] [Abstract][Full Text] [Related]
45. A fungal substrate mimicking molecule suppresses plant immunity via an inter-kingdom conserved motif. Misas Villamil JC; Mueller AN; Demir F; Meyer U; Ökmen B; Schulze Hüynck J; Breuer M; Dauben H; Win J; Huesgen PF; Doehlemann G Nat Commun; 2019 Apr; 10(1):1576. PubMed ID: 30952847 [TBL] [Abstract][Full Text] [Related]
46. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Kämper J; Kahmann R; Bölker M; Ma LJ; Brefort T; Saville BJ; Banuett F; Kronstad JW; Gold SE; Müller O; Perlin MH; Wösten HA; de Vries R; Ruiz-Herrera J; Reynaga-Peña CG; Snetselaar K; McCann M; Pérez-Martín J; Feldbrügge M; Basse CW; Steinberg G; Ibeas JI; Holloman W; Guzman P; Farman M; Stajich JE; Sentandreu R; González-Prieto JM; Kennell JC; Molina L; Schirawski J; Mendoza-Mendoza A; Greilinger D; Münch K; Rössel N; Scherer M; Vranes M; Ladendorf O; Vincon V; Fuchs U; Sandrock B; Meng S; Ho EC; Cahill MJ; Boyce KJ; Klose J; Klosterman SJ; Deelstra HJ; Ortiz-Castellanos L; Li W; Sanchez-Alonso P; Schreier PH; Häuser-Hahn I; Vaupel M; Koopmann E; Friedrich G; Voss H; Schlüter T; Margolis J; Platt D; Swimmer C; Gnirke A; Chen F; Vysotskaia V; Mannhaupt G; Güldener U; Münsterkötter M; Haase D; Oesterheld M; Mewes HW; Mauceli EW; DeCaprio D; Wade CM; Butler J; Young S; Jaffe DB; Calvo S; Nusbaum C; Galagan J; Birren BW Nature; 2006 Nov; 444(7115):97-101. PubMed ID: 17080091 [TBL] [Abstract][Full Text] [Related]
47. Tip of the iceberg? Three novel TOPLESS-interacting effectors of the gall-inducing fungus Ustilago maydis. Khan M; Uhse S; Bindics J; Kogelmann B; Nagarajan N; Tabassum R; Ingole KD; Djamei A New Phytol; 2024 Nov; 244(3):949-961. PubMed ID: 39021059 [TBL] [Abstract][Full Text] [Related]
48. Using Ustilago maydis as a Trojan Horse for In Situ Delivery of Maize Proteins. Fiedler IC; Weiberg A; van der Linde K J Vis Exp; 2019 Feb; (144):. PubMed ID: 30799846 [TBL] [Abstract][Full Text] [Related]
49. The Ustilago maydis forkhead transcription factor Fox1 is involved in the regulation of genes required for the attenuation of plant defenses during pathogenic development. Zahiri A; Heimel K; Wahl R; Rath M; Kämper J Mol Plant Microbe Interact; 2010 Sep; 23(9):1118-29. PubMed ID: 20687802 [TBL] [Abstract][Full Text] [Related]
50. An Ustilago maydis gene involved in H2O2 detoxification is required for virulence. Molina L; Kahmann R Plant Cell; 2007 Jul; 19(7):2293-309. PubMed ID: 17616735 [TBL] [Abstract][Full Text] [Related]
51. Chitosan and Chitin Deacetylase Activity Are Necessary for Development and Virulence of Ustilago maydis. Rizzi YS; Happel P; Lenz S; Urs MJ; Bonin M; Cord-Landwehr S; Singh R; Moerschbacher BM; Kahmann R mBio; 2021 Mar; 12(2):. PubMed ID: 33653886 [TBL] [Abstract][Full Text] [Related]
52. Use of PCR to detect infection of differentially susceptible maize cultivars using Ustilago maydis strains of variable virulence. Martínez-Espinoza AD; León-Ramírez CG; Singh N; Ruiz-Herrera J Int Microbiol; 2003 Jun; 6(2):117-20. PubMed ID: 12768432 [TBL] [Abstract][Full Text] [Related]
53. Chloroplast-associated metabolic functions influence the susceptibility of maize to Ustilago maydis. Kretschmer M; Croll D; Kronstad JW Mol Plant Pathol; 2017 Dec; 18(9):1210-1221. PubMed ID: 27564650 [TBL] [Abstract][Full Text] [Related]
54. A Secreted Effector Protein of Ustilago maydis Guides Maize Leaf Cells to Form Tumors. Redkar A; Hoser R; Schilling L; Zechmann B; Krzymowska M; Walbot V; Doehlemann G Plant Cell; 2015 Apr; 27(4):1332-51. PubMed ID: 25888589 [TBL] [Abstract][Full Text] [Related]
55. Establishment of compatibility in the Ustilago maydis/maize pathosystem. Doehlemann G; Wahl R; Vranes M; de Vries RP; Kämper J; Kahmann R J Plant Physiol; 2008 Jan; 165(1):29-40. PubMed ID: 17905472 [TBL] [Abstract][Full Text] [Related]
56. The fungal UmSrt1 and maize ZmSUT1 sucrose transporters battle for plant sugar resources. Wittek A; Dreyer I; Al-Rasheid KAS; Sauer N; Hedrich R; Geiger D J Integr Plant Biol; 2017 Jun; 59(6):422-435. PubMed ID: 28296205 [TBL] [Abstract][Full Text] [Related]
57. Endoplasmic reticulum glucosidases and protein quality control factors cooperate to establish biotrophy in Ustilago maydis. Fernández-Álvarez A; Elías-Villalobos A; Jiménez-Martín A; Marín-Menguiano M; Ibeas JI Plant Cell; 2013 Nov; 25(11):4676-90. PubMed ID: 24280385 [TBL] [Abstract][Full Text] [Related]
58. Degradation of the plant defence hormone salicylic acid by the biotrophic fungus Ustilago maydis. Rabe F; Ajami-Rashidi Z; Doehlemann G; Kahmann R; Djamei A Mol Microbiol; 2013 Jul; 89(1):179-88. PubMed ID: 23692401 [TBL] [Abstract][Full Text] [Related]
59. Discrimination of differentially inhibited cysteine proteases by activity-based profiling using cystatin variants with tailored specificities. Sainsbury F; Rhéaume AJ; Goulet MC; Vorster J; Michaud D J Proteome Res; 2012 Dec; 11(12):5983-93. PubMed ID: 23082957 [TBL] [Abstract][Full Text] [Related]
60. Evidence for a Ustilago maydis steroid 5alpha-reductase by functional expression in Arabidopsis det2-1 mutants. Basse CW; Kerschbamer C; Brustmann M; Altmann T; Kahmann R Plant Physiol; 2002 Jun; 129(2):717-32. PubMed ID: 12068114 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]