These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
334 related articles for article (PubMed ID: 22454455)
61. Phytohormone Involvement in the Ustilago maydis- Zea mays Pathosystem: Relationships between Abscisic Acid and Cytokinin Levels and Strain Virulence in Infected Cob Tissue. Morrison EN; Emery RJ; Saville BJ PLoS One; 2015; 10(6):e0130945. PubMed ID: 26107181 [TBL] [Abstract][Full Text] [Related]
62. Genome-Wide Characterization of the Maize ( Wang Y; Li W; Qu J; Li F; Du W; Weng J Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834371 [TBL] [Abstract][Full Text] [Related]
63. A kiwellin disarms the metabolic activity of a secreted fungal virulence factor. Han X; Altegoer F; Steinchen W; Binnebesel L; Schuhmacher J; Glatter T; Giammarinaro PI; Djamei A; Rensing SA; Reissmann S; Kahmann R; Bange G Nature; 2019 Jan; 565(7741):650-653. PubMed ID: 30651637 [TBL] [Abstract][Full Text] [Related]
64. Interactions between Fusarium verticillioides, Ustilago maydis, and Zea mays: an endophyte, a pathogen, and their shared plant host. Rodriguez Estrada AE; Jonkers W; Kistler HC; May G Fungal Genet Biol; 2012 Jul; 49(7):578-87. PubMed ID: 22587948 [TBL] [Abstract][Full Text] [Related]
65. TcCYPR04, a Cacao Papain-Like Cysteine-Protease Detected in Senescent and Necrotic Tissues Interacts with a Cystatin TcCYS4. Cardoso TH; Freitas AC; Andrade BS; Sousa AO; Santiago Ada S; Koop DM; Gramacho KP; Alvim FC; Micheli F; Pirovani CP PLoS One; 2015; 10(12):e0144440. PubMed ID: 26641247 [TBL] [Abstract][Full Text] [Related]
66. Phytohormone sensing in the biotrophic fungus Ustilago maydis - the dual role of the transcription factor Rss1. Rabe F; Seitner D; Bauer L; Navarrete F; Czedik-Eysenberg A; Rabanal FA; Djamei A Mol Microbiol; 2016 Oct; 102(2):290-305. PubMed ID: 27387604 [TBL] [Abstract][Full Text] [Related]
68. Transcripts and tumors: regulatory and metabolic programming during biotrophic phytopathogenesis. Schmitz L; McCotter S; Kretschmer M; Kronstad JW; Heimel K F1000Res; 2018; 7():. PubMed ID: 30519451 [TBL] [Abstract][Full Text] [Related]
69. A Conserved Microbial Motif 'Traps' Protease Activation in Host Immunity. Sabale M; Di Pietro A; Redkar A Trends Plant Sci; 2019 Aug; 24(8):665-667. PubMed ID: 31280986 [TBL] [Abstract][Full Text] [Related]
70. Smut infection of perennial hosts: the genome and the transcriptome of the Brassicaceae smut fungus Thecaphora thlaspeos reveal functionally conserved and novel effectors. Courville KJ; Frantzeskakis L; Gul S; Haeger N; Kellner R; Heßler N; Day B; Usadel B; Gupta YK; van Esse HP; Brachmann A; Kemen E; Feldbrügge M; Göhre V New Phytol; 2019 May; 222(3):1474-1492. PubMed ID: 30663769 [TBL] [Abstract][Full Text] [Related]
71. ZmMKK1, a novel group A mitogen-activated protein kinase kinase gene in maize, conferred chilling stress tolerance and was involved in pathogen defense in transgenic tobacco. Cai G; Wang G; Wang L; Pan J; Liu Y; Li D Plant Sci; 2014 Jan; 214():57-73. PubMed ID: 24268164 [TBL] [Abstract][Full Text] [Related]
72. Hxt1, a monosaccharide transporter and sensor required for virulence of the maize pathogen Ustilago maydis. Schuler D; Wahl R; Wippel K; Vranes M; Münsterkötter M; Sauer N; Kämper J New Phytol; 2015 May; 206(3):1086-1100. PubMed ID: 25678342 [TBL] [Abstract][Full Text] [Related]
73. Assessment of Ustilago maydis as a fungal model for root infection studies. Mazaheri-Naeini M; Sabbagh SK; Martinez Y; Séjalon-Delmas N; Roux C Fungal Biol; 2015 Mar; 119(2-3):145-53. PubMed ID: 25749366 [TBL] [Abstract][Full Text] [Related]