BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 22454481)

  • 41. Overexpression of hexokinase 2 reduces mitochondrial calcium overload in coronary endothelial cells of type 2 diabetic mice.
    Pan M; Han Y; Basu A; Dai A; Si R; Willson C; Balistrieri A; Scott BT; Makino A
    Am J Physiol Cell Physiol; 2018 Jun; 314(6):C732-C740. PubMed ID: 29513568
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of EDHF in type 2 diabetes-induced endothelial dysfunction.
    Park Y; Capobianco S; Gao X; Falck JR; Dellsperger KC; Zhang C
    Am J Physiol Heart Circ Physiol; 2008 Nov; 295(5):H1982-8. PubMed ID: 18790831
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Poly-ADP-ribose-polymerase inhibition ameliorates hind limb ischemia reperfusion injury in a murine model of type 2 diabetes.
    Long CA; Boulom V; Albadawi H; Tsai S; Yoo HJ; Oklu R; Goldman MH; Watkins MT
    Ann Surg; 2013 Dec; 258(6):1087-95. PubMed ID: 23549425
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Poly(ADP-ribose) polymerase (PARP) inhibition counteracts multiple manifestations of kidney disease in long-term streptozotocin-diabetic rat model.
    Shevalye H; Stavniichuk R; Xu W; Zhang J; Lupachyk S; Maksimchyk Y; Drel VR; Floyd EZ; Slusher B; Obrosova IG
    Biochem Pharmacol; 2010 Apr; 79(7):1007-14. PubMed ID: 19945439
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mesenteric injury after cardiopulmonary bypass: role of poly(adenosine 5'-diphosphate-ribose) polymerase.
    Szabó G; Soós P; Mandera S; Heger U; Flechtenmacher C; Seres L; Zsengellér Z; Sack FU; Szabó C; Hagl S
    Crit Care Med; 2004 Dec; 32(12):2392-7. PubMed ID: 15599141
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Poly(ADP-ribose) polymerase-1 inhibition in brain endothelium protects the blood-brain barrier under physiologic and neuroinflammatory conditions.
    Rom S; Zuluaga-Ramirez V; Dykstra H; Reichenbach NL; Ramirez SH; Persidsky Y
    J Cereb Blood Flow Metab; 2015 Jan; 35(1):28-36. PubMed ID: 25248836
    [TBL] [Abstract][Full Text] [Related]  

  • 47. PARP-1 inhibition protects the diabetic heart through activation of SIRT1-PGC-1α axis.
    Waldman M; Nudelman V; Shainberg A; Abraham NG; Kornwoski R; Aravot D; Arad M; Hochhauser E
    Exp Cell Res; 2018 Dec; 373(1-2):112-118. PubMed ID: 30359575
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inhibition of endoplasmic reticulum stress improves coronary artery function in type 2 diabetic mice.
    Choi SK; Lim M; Yeon SI; Lee YH
    Exp Physiol; 2016 Jun; 101(6):768-77. PubMed ID: 26990483
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Immunohistochemical detection of poly(ADP-ribose) polymerase inhibition by ABT-888 in patients with refractory solid tumors and lymphomas.
    Yang SX; Kummar S; Steinberg SM; Murgo AJ; Gutierrez M; Rubinstein L; Nguyen D; Kaur G; Chen AP; Giranda VL; Tomaszewski JE; Doroshow JH;
    Cancer Biol Ther; 2009 Nov; 8(21):2004-9. PubMed ID: 19823047
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of poly(ADP-ribose) polymerase inhibition on dysfunction of non-adrenergic non-cholinergic neurotransmission in gastric fundus in diabetic rats.
    Gibson TM; Cotter MA; Cameron NE
    Nitric Oxide; 2006 Dec; 15(4):344-50. PubMed ID: 16644248
    [TBL] [Abstract][Full Text] [Related]  

  • 51. INO-1001 a novel poly(ADP-ribose) polymerase (PARP) inhibitor improves cardiac and pulmonary function after crystalloid cardioplegia and extracorporal circulation.
    Szabó G; Soós P; Mandera S; Heger U; Flechtenmacher C; Bährle S; Seres L; Cziráki A; Gries A; Zsengellér Z; Vahl CF; Hagl S; Szabó C
    Shock; 2004 May; 21(5):426-32. PubMed ID: 15087818
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Inhibition of bone morphogenic protein 4 restores endothelial function in db/db diabetic mice.
    Zhang Y; Liu J; Tian XY; Wong WT; Chen Y; Wang L; Luo J; Cheang WS; Lau CW; Kwan KM; Wang N; Yao X; Huang Y
    Arterioscler Thromb Vasc Biol; 2014 Jan; 34(1):152-9. PubMed ID: 24202302
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Endothelium-dependent relaxation competes with alpha 1- and alpha 2-adrenergic constriction in the canine epicardial coronary microcirculation.
    Jones CJ; DeFily DV; Patterson JL; Chilian WM
    Circulation; 1993 Apr; 87(4):1264-74. PubMed ID: 8384938
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Exercise restores coronary vascular function independent of myogenic tone or hyperglycemic status in db/db mice.
    Moien-Afshari F; Ghosh S; Elmi S; Khazaei M; Rahman MM; Sallam N; Laher I
    Am J Physiol Heart Circ Physiol; 2008 Oct; 295(4):H1470-80. PubMed ID: 18641279
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Poly(ADP-ribose) polymerase 1 inhibition protects against low shear stress induced inflammation.
    Qin WD; Wei SJ; Wang XP; Wang J; Wang WK; Liu F; Gong L; Yan F; Zhang Y; Zhang M
    Biochim Biophys Acta; 2013 Jan; 1833(1):59-68. PubMed ID: 23085506
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Treatment with insulin inhibits poly(ADP-ribose)polymerase activation in a rat model of endotoxemia.
    Horváth EM; Benko R; Gero D; Kiss L; Szabó C
    Life Sci; 2008 Jan; 82(3-4):205-9. PubMed ID: 18078960
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Aldose reductase inhibition counteracts oxidative-nitrosative stress and poly(ADP-ribose) polymerase activation in tissue sites for diabetes complications.
    Obrosova IG; Pacher P; Szabó C; Zsengeller Z; Hirooka H; Stevens MJ; Yorek MA
    Diabetes; 2005 Jan; 54(1):234-42. PubMed ID: 15616034
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inhibition of poly(ADP-ribose) polymerase-1 or poly(ADP‑ribose) glycohydrolase individually, but not in combination, leads to improved chemotherapeutic efficacy in HeLa cells.
    Feng X; Koh DW
    Int J Oncol; 2013 Feb; 42(2):749-56. PubMed ID: 23254695
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Immunomodulatory effects of poly(ADP-ribose) polymerase inhibition contribute to improved cardiac function and survival during acute cardiac rejection.
    Szabó G; Bährle S; Sivanandam V; Stumpf N; Gerö D; Berger I; Beller C; Hagl S; Szabó C; Dengler TJ
    J Heart Lung Transplant; 2006 Jul; 25(7):794-804. PubMed ID: 16818122
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mineralocorticoid receptor antagonism reverses diabetes-related coronary vasodilator dysfunction: A unique vascular transcriptomic signature.
    Brown SM; Meuth AI; Davis JW; Rector RS; Bender SB
    Pharmacol Res; 2018 Aug; 134():100-108. PubMed ID: 29870805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.