BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 22454498)

  • 1. Genetic switchboard for synthetic biology applications.
    Callura JM; Cantor CR; Collins JJ
    Proc Natl Acad Sci U S A; 2012 Apr; 109(15):5850-5. PubMed ID: 22454498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multicolor optogenetics for regulating flux ratio of three glycolytic pathways using EL222 and CcaSR in Escherichia coli.
    Akagi H; Shimizu H; Toya Y
    Biotechnol Bioeng; 2024 Mar; 121(3):1016-1025. PubMed ID: 38116710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-production of hydrogen and ethanol from glucose in
    Sundara Sekar B; Seol E; Park S
    Biotechnol Biofuels; 2017; 10():85. PubMed ID: 28360941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modular electron transfer circuits for synthetic biology: insulation of an engineered biohydrogen pathway.
    Agapakis CM; Silver PA
    Bioeng Bugs; 2010; 1(6):413-8. PubMed ID: 21468209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the effects of perturbations to pgi and eno gene expression on central carbon metabolism in Escherichia coli using (13)C metabolic flux analysis.
    Usui Y; Hirasawa T; Furusawa C; Shirai T; Yamamoto N; Mori H; Shimizu H
    Microb Cell Fact; 2012 Jun; 11():87. PubMed ID: 22721472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functionalization of an Antisense Small RNA.
    Rodrigo G; Prakash S; Cordero T; Kushwaha M; Jaramillo A
    J Mol Biol; 2016 Feb; 428(5 Pt B):889-92. PubMed ID: 26756967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reverse Engineering in Biotechnology: The Role of Genetic Engineering in Synthetic Biology.
    Bijukumar G; Somvanshi PR
    Methods Mol Biol; 2024; 2719():307-324. PubMed ID: 37803125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global metabolic response of Escherichia coli to gnd or zwf gene-knockout, based on 13C-labeling experiments and the measurement of enzyme activities.
    Zhao J; Baba T; Mori H; Shimizu K
    Appl Microbiol Biotechnol; 2004 Mar; 64(1):91-8. PubMed ID: 14661115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-production of hydrogen and ethanol from glucose by modification of glycolytic pathways in Escherichia coli - from Embden-Meyerhof-Parnas pathway to pentose phosphate pathway.
    Seol E; Sekar BS; Raj SM; Park S
    Biotechnol J; 2016 Feb; 11(2):249-56. PubMed ID: 26581029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification of targets related to the Entner-Doudoroff/pentose phosphate pathway route for methyl-D-erythritol 4-phosphate-dependent carotenoid biosynthesis in Escherichia coli.
    Li C; Ying LQ; Zhang SS; Chen N; Liu WF; Tao Y
    Microb Cell Fact; 2015 Aug; 14():117. PubMed ID: 26264597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coexistence of the Entner-Doudoroff and Embden-Meyerhof-Parnas pathways enhances glucose consumption of ethanol-producing Corynebacterium glutamicum.
    Jojima T; Igari T; Noburyu R; Watanabe A; Suda M; Inui M
    Biotechnol Biofuels; 2021 Feb; 14(1):45. PubMed ID: 33593398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Streamlining genomes: toward the generation of simplified and stabilized microbial systems.
    Leprince A; van Passel MW; dos Santos VA
    Curr Opin Biotechnol; 2012 Oct; 23(5):651-8. PubMed ID: 22651991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence and genetic organization of a Zymomonas mobilis gene cluster that encodes several enzymes of glucose metabolism.
    Barnell WO; Yi KC; Conway T
    J Bacteriol; 1990 Dec; 172(12):7227-40. PubMed ID: 2254282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of synthetic gene circuits in the Escherichia coli genome.
    Ying BW; Akeno Y; Yomo T
    Methods Mol Biol; 2013; 1073():157-68. PubMed ID: 23996446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of metabolic stress on genome stability of a synthetic biology chassis Escherichia coli K12 strain.
    Couto JM; McGarrity A; Russell J; Sloan WT
    Microb Cell Fact; 2018 Jan; 17(1):8. PubMed ID: 29357936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [2D [1H,13C] NMR study of carbon fluxes during glucose utilization by Escherichia coli MG1655].
    Kivero AD; Bocharov EV; Doroshenko VG; Sobol' AG; Dubinnyĭ MA; Arsen'ev AS
    Prikl Biokhim Mikrobiol; 2008; 44(2):168-75. PubMed ID: 18669258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optogenetic switch for controlling the central metabolic flux of Escherichia coli.
    Tandar ST; Senoo S; Toya Y; Shimizu H
    Metab Eng; 2019 Sep; 55():68-75. PubMed ID: 31207291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose.
    Gonzalez R; Tao H; Shanmugam KT; York SW; Ingram LO
    Biotechnol Prog; 2002; 18(1):6-20. PubMed ID: 11822894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recoded organisms engineered to depend on synthetic amino acids.
    Rovner AJ; Haimovich AD; Katz SR; Li Z; Grome MW; Gassaway BM; Amiram M; Patel JR; Gallagher RR; Rinehart J; Isaacs FJ
    Nature; 2015 Feb; 518(7537):89-93. PubMed ID: 25607356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of cytidine production by coexpression of gnd, zwf, and prs genes in recombinant Escherichia coli CYT15.
    Fang H; Xie X; Xu Q; Zhang C; Chen N
    Biotechnol Lett; 2013 Feb; 35(2):245-51. PubMed ID: 23070626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.