These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 22454508)

  • 41. A conserved membrane-binding domain targets proteins to organelle contact sites.
    Toulmay A; Prinz WA
    J Cell Sci; 2012 Jan; 125(Pt 1):49-58. PubMed ID: 22250200
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quantitative live-cell PALM reveals nanoscopic Faa4 redistributions and dynamics on lipid droplets during metabolic transitions of yeast.
    Adhikari S; Moscatelli J; Puchner EM
    Mol Biol Cell; 2021 Aug; 32(17):1565-1578. PubMed ID: 34161133
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Binding of Cdc48p to a ubiquitin-related UBX domain from novel yeast proteins involved in intracellular proteolysis and sporulation.
    Decottignies A; Evain A; Ghislain M
    Yeast; 2004 Jan; 21(2):127-39. PubMed ID: 14755638
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Proteomics Analysis of Lipid Droplets from the Oleaginous Alga Chromochloris zofingiensis Reveals Novel Proteins for Lipid Metabolism.
    Wang X; Wei H; Mao X; Liu J
    Genomics Proteomics Bioinformatics; 2019 Jun; 17(3):260-272. PubMed ID: 31494267
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Monotopic topology is required for lipid droplet targeting of ancient ubiquitous protein 1.
    Stevanovic A; Thiele C
    J Lipid Res; 2013 Feb; 54(2):503-13. PubMed ID: 23197321
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Derlin-1 and UBXD8 are engaged in dislocation and degradation of lipidated ApoB-100 at lipid droplets.
    Suzuki M; Otsuka T; Ohsaki Y; Cheng J; Taniguchi T; Hashimoto H; Taniguchi H; Fujimoto T
    Mol Biol Cell; 2012 Mar; 23(5):800-10. PubMed ID: 22238364
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High confidence proteomic analysis of yeast LDs identifies additional droplet proteins and reveals connections to dolichol synthesis and sterol acetylation.
    Currie E; Guo X; Christiano R; Chitraju C; Kory N; Harrison K; Haas J; Walther TC; Farese RV
    J Lipid Res; 2014 Jul; 55(7):1465-77. PubMed ID: 24868093
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spatial control of lipid droplet proteins by the ERAD ubiquitin ligase Doa10.
    Ruggiano A; Mora G; Buxó L; Carvalho P
    EMBO J; 2016 Aug; 35(15):1644-55. PubMed ID: 27357570
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Involvement of the Saccharomyces cerevisiae hydrolase Ldh1p in lipid homeostasis.
    Debelyy MO; Thoms S; Connerth M; Daum G; Erdmann R
    Eukaryot Cell; 2011 Jun; 10(6):776-81. PubMed ID: 21478434
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of seipin-linked factors that act as determinants of a lipid droplet subpopulation.
    Eisenberg-Bord M; Mari M; Weill U; Rosenfeld-Gur E; Moldavski O; Castro IG; Soni KG; Harpaz N; Levine TP; Futerman AH; Reggiori F; Bankaitis VA; Schuldiner M; Bohnert M
    J Cell Biol; 2018 Jan; 217(1):269-282. PubMed ID: 29187527
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Two Cdc48 cofactors Ubp3 and Ubx2 regulate mitochondrial morphology and protein turnover.
    Chowdhury A; Ogura T; Esaki M
    J Biochem; 2018 Nov; 164(5):349-358. PubMed ID: 29924334
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Getting a handle on lipid droplets: Insights into ER-lipid droplet tethering.
    Nguyen TB; Olzmann JA
    J Cell Biol; 2019 Apr; 218(4):1089-1091. PubMed ID: 30886057
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification and characterization of associated with lipid droplet protein 1: A novel membrane-associated protein that resides on hepatic lipid droplets.
    Turró S; Ingelmo-Torres M; Estanyol JM; Tebar F; Fernández MA; Albor CV; Gaus K; Grewal T; Enrich C; Pol A
    Traffic; 2006 Sep; 7(9):1254-69. PubMed ID: 17004324
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Seipin is involved in the regulation of phosphatidic acid metabolism at a subdomain of the nuclear envelope in yeast.
    Wolinski H; Hofbauer HF; Hellauer K; Cristobal-Sarramian A; Kolb D; Radulovic M; Knittelfelder OL; Rechberger GN; Kohlwein SD
    Biochim Biophys Acta; 2015 Nov; 1851(11):1450-64. PubMed ID: 26275961
    [TBL] [Abstract][Full Text] [Related]  

  • 55. FIT2 is an acyl-coenzyme A diphosphatase crucial for endoplasmic reticulum homeostasis.
    Becuwe M; Bond LM; Pinto AFM; Boland S; Mejhert N; Elliott SD; Cicconet M; Graham MM; Liu XN; Ilkayeva O; Saghatelian A; Walther TC; Farese RV
    J Cell Biol; 2020 Oct; 219(10):. PubMed ID: 32915949
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Solution structure of the ubiquitin-binding domain in Swa2p from Saccharomyces cerevisiae.
    Chim N; Gall WE; Xiao J; Harris MP; Graham TR; Krezel AM
    Proteins; 2004 Mar; 54(4):784-93. PubMed ID: 14997574
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The NTPase activity of the double FYVE domain-containing protein 1 regulates lipid droplet metabolism.
    Ismail VA; Naismith T; Kast DJ
    J Biol Chem; 2023 Feb; 299(2):102830. PubMed ID: 36574842
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Lipid Droplet and the Endoplasmic Reticulum.
    Ohsaki Y; Sołtysik K; Fujimoto T
    Adv Exp Med Biol; 2017; 997():111-120. PubMed ID: 28815525
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lipid droplet biogenesis from specialized ER subdomains.
    Choudhary V; Schneiter R
    Microb Cell; 2020 Jun; 7(8):218-221. PubMed ID: 32743002
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Stationary phase lipophagy as a cellular mechanism to recycle sterols during quiescence.
    Wang CW
    Autophagy; 2014; 10(11):2075-6. PubMed ID: 25484090
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.