These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22454586)

  • 1. Bacteriophage t4 nanoparticles as materials in sensor applications: variables that influence their organization and assembly on surfaces.
    Archer MJ; Liu JL
    Sensors (Basel); 2009; 9(8):6298-311. PubMed ID: 22454586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic force microscopy of bacteriophage T4 and its tube-baseplate complex.
    Ikai A; Yoshimura K; Arisaka F; Ritani A; Imai K
    FEBS Lett; 1993 Jul; 326(1-3):39-41. PubMed ID: 8325385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A free-floating mucin layer to investigate the effect of the local microenvironment in lungs on mucin-nanoparticle interactions.
    Wan F; Herzberg M; Huang Z; Hassenkam T; Nielsen HM
    Acta Biomater; 2020 Mar; 104():115-123. PubMed ID: 31945503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered T4 viral nanoparticles for cellular imaging and flow cytometry.
    Robertson KL; Soto CM; Archer MJ; Odoemene O; Liu JL
    Bioconjug Chem; 2011 Apr; 22(4):595-604. PubMed ID: 21375348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of bacteriophage T4 adhesin with selected lipopolysaccharides studied using atomic force microscopy.
    Brzozowska E; Leśniewski A; Sęk S; Wieneke R; Tampé R; Górska S; Jönsson-Niedziółka M; Niedziółka-Jönsson J
    Sci Rep; 2018 Jul; 8(1):10935. PubMed ID: 30026546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Bacteriophage T4 Nanoparticle-Based Dual Vaccine against Anthrax and Plague.
    Tao P; Mahalingam M; Zhu J; Moayeri M; Sha J; Lawrence WS; Leppla SH; Chopra AK; Rao VB
    mBio; 2018 Oct; 9(5):. PubMed ID: 30327445
    [No Abstract]   [Full Text] [Related]  

  • 7. Engineered bacteriophage T4 nanoparticles for cellular imaging.
    Liu JL; Robertson KL
    Methods Mol Biol; 2014; 1108():187-99. PubMed ID: 24243250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Functionalization of Metal Nanoparticles by Conjugated Metal-Ligand Interfacial Bonds: Impacts on Intraparticle Charge Transfer.
    Hu P; Chen L; Kang X; Chen S
    Acc Chem Res; 2016; 49(10):2251-2260. PubMed ID: 27690382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of positively charged gold nanoparticle monolayers on silica sensors.
    Oćwieja M; Maciejewska-Prończuk J; Adamczyk Z; Roman M
    J Colloid Interface Sci; 2017 Sep; 501():192-201. PubMed ID: 28456103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of isolated biomolecules for SFM observations: T4 bacteriophage as a test sample.
    Droz E; Taborelli M; Wells TN; Descouts P
    Biophys J; 1993 Sep; 65(3):1180-7. PubMed ID: 8241398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the surfaces generated by liposome binding to the modified dextran matrix of a surface plasmon resonance sensor chip.
    Erb EM; Chen X; Allen S; Roberts CJ; Tendler SJ; Davies MC; Forsén S
    Anal Biochem; 2000 Apr; 280(1):29-35. PubMed ID: 10805517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deletion of the Hoc and Soc capsid proteins affects the surface and cellular uptake properties of bacteriophage T4 derived nanoparticles.
    Robertson K; Furukawa Y; Underwood A; Black L; Liu JL
    Biochem Biophys Res Commun; 2012 Feb; 418(3):537-40. PubMed ID: 22285187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A New Label-Free Technique for Analysing Evaporation Induced Self-Assembly of Viral Nanoparticles Based on Enhanced Dark-Field Optical Imaging.
    Ghaeli I; Hosseinidoust Z; Zolfagharnasab H; Jorge Monteiro F
    Nanomaterials (Basel); 2017 Dec; 8(1):. PubMed ID: 29271875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake of pH-Sensitive Gold Nanoparticles in Strong Polyelectrolyte Brushes.
    Kesal D; Christau S; Krause P; Möller T; Von Klitzing R
    Polymers (Basel); 2016 Apr; 8(4):. PubMed ID: 30979224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic force microscopy analysis of bacteriophages phiKZ and T4.
    Matsko N; Klinov D; Manykin A; Demin V; Klimenko S
    J Electron Microsc (Tokyo); 2001; 50(5):417-22. PubMed ID: 11794617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The qPlus sensor, a powerful core for the atomic force microscope.
    Giessibl FJ
    Rev Sci Instrum; 2019 Jan; 90(1):011101. PubMed ID: 30709191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of T4 bacteriophages on planar indium tin oxide surface via controlled surface tailoring.
    Liana AE; Chia EW; Marquis CP; Gunawan C; Gooding JJ; Amal R
    J Colloid Interface Sci; 2016 Apr; 468():192-199. PubMed ID: 26851452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precise control of surface electrostatic forces on polymer brush layers with opposite charges for resistance to protein adsorption.
    Sakata S; Inoue Y; Ishihara K
    Biomaterials; 2016 Oct; 105():102-108. PubMed ID: 27512944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adhesion force evolution of protein on the surfaces with varied hydration extent: Quantitative determination via atomic force microscopy.
    Zhang Y; Zhu X; Chen B
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):255-264. PubMed ID: 34626972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimicrobial activity of T4 bacteriophage conjugated indium tin oxide surfaces.
    Liana AE; Marquis CP; Gunawan C; Justin Gooding J; Amal R
    J Colloid Interface Sci; 2018 Mar; 514():227-233. PubMed ID: 29268213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.