These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 22455017)

  • 1. Ionic liquids studied across different scales: a computational perspective.
    Wendler K; Dommert F; Zhao YY; Berger R; Holm C; Delle Site L
    Faraday Discuss; 2012; 154():111-32; discussion 189-220, 465-71. PubMed ID: 22455017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-pressure study of the methylsulfate and tosylate imidazolium ionic liquids.
    Aparicio S; Alcalde R; García B; Leal JM
    J Phys Chem B; 2009 Apr; 113(16):5593-606. PubMed ID: 19331328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple AIMD approach to derive atomic charges for condensed phase simulation of ionic liquids.
    Zhang Y; Maginn EJ
    J Phys Chem B; 2012 Aug; 116(33):10036-48. PubMed ID: 22852554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular solutes in ionic liquids: a structural perspective.
    Pádua AA; Costa Gomes MF; Canongia Lopes JN
    Acc Chem Res; 2007 Nov; 40(11):1087-96. PubMed ID: 17661440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of quantum chemically derived charges and persistence of ion cages in ionic liquids. A molecular dynamics simulations study of 1-n-butyl-3-methylimidazolium bromide.
    Kohagen M; Brehm M; Thar J; Zhao W; Müller-Plathe F; Kirchner B
    J Phys Chem B; 2011 Feb; 115(4):693-702. PubMed ID: 21171617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force fields for studying the structure and dynamics of ionic liquids: a critical review of recent developments.
    Dommert F; Wendler K; Berger R; Delle Site L; Holm C
    Chemphyschem; 2012 May; 13(7):1625-37. PubMed ID: 22344944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulations of ionic liquids, solutions, and surfaces.
    Lynden-Bell RM; Del Pópolo MG; Youngs TG; Kohanoff J; Hanke CG; Harper JB; Pinilla CC
    Acc Chem Res; 2007 Nov; 40(11):1138-45. PubMed ID: 17914887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic structure calculations and physicochemical experiments quantify the competitive liquid ion association and probe stabilisation effects for nitrobenzospiropyran in phosphonium-based ionic liquids.
    Thompson D; Coleman S; Diamond D; Byrne R
    Phys Chem Chem Phys; 2011 Apr; 13(13):6156-68. PubMed ID: 21350746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon dioxide capture by aminoalkyl imidazolium-based ionic liquid: a computational investigation.
    Chen JJ; Li WW; Li XL; Yu HQ
    Phys Chem Chem Phys; 2012 Apr; 14(13):4589-96. PubMed ID: 22358056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Explicit polarization: a quantum mechanical framework for developing next generation force fields.
    Gao J; Truhlar DG; Wang Y; Mazack MJ; Löffler P; Provorse MR; Rehak P
    Acc Chem Res; 2014 Sep; 47(9):2837-45. PubMed ID: 25098651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of electrostatic forces on the structure and dynamics of molecular ionic liquids.
    Schröder C; Steinhauser O
    J Chem Phys; 2008 Jun; 128(22):224503. PubMed ID: 18554025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative prediction of physical properties of imidazolium based room temperature ionic liquids through determination of condensed phase site charges: a refined force field.
    Mondal A; Balasubramanian S
    J Phys Chem B; 2014 Mar; 118(12):3409-22. PubMed ID: 24605817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the computation and contribution of conductivity in molecular ionic liquids.
    Schröder C; Haberler M; Steinhauser O
    J Chem Phys; 2008 Apr; 128(13):134501. PubMed ID: 18397071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing reduced partial charge models with polarizable simulations of ionic liquids.
    Schröder C
    Phys Chem Chem Phys; 2012 Mar; 14(9):3089-102. PubMed ID: 22287020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale coarse-grained simulations of ionic liquids: comparison of three approaches to derive effective potentials.
    Wang YL; Lyubartsev A; Lu ZY; Laaksonen A
    Phys Chem Chem Phys; 2013 May; 15(20):7701-12. PubMed ID: 23595102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Molecular Dynamics-Quantum Mechanics Theoretical Study of DNA-Mediated Charge Transport in Hydrated Ionic Liquids.
    Meng Z; Kubar T; Mu Y; Shao F
    J Chem Theory Comput; 2018 May; 14(5):2733-2742. PubMed ID: 29570288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of polarization on structural, thermodynamic, and dynamic properties of ionic liquids obtained from molecular dynamics simulations.
    Bedrov D; Borodin O; Li Z; Smith GD
    J Phys Chem B; 2010 Apr; 114(15):4984-97. PubMed ID: 20337454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Dynamics Simulations of Ionic Liquids and Electrolytes Using Polarizable Force Fields.
    Bedrov D; Piquemal JP; Borodin O; MacKerell AD; Roux B; Schröder C
    Chem Rev; 2019 Jul; 119(13):7940-7995. PubMed ID: 31141351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvation-driven excited-state dynamics of [Re(4-Et-Pyridine)(CO)3(2,2'-bipyridine)]+ in imidazolium ionic liquids. A time-resolved infrared and phosphorescence study.
    Blanco-Rodríguez AM; Ronayne KL; Zalis S; Sýkora J; Hof M; Vlcek A
    J Phys Chem A; 2008 Apr; 112(16):3506-14. PubMed ID: 18373366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular interactions and thermal transport in ionic liquids with carbon nanomaterials.
    França JMP; Nieto de Castro CA; Pádua AAH
    Phys Chem Chem Phys; 2017 Jul; 19(26):17075-17087. PubMed ID: 28621790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.