These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 2245502)

  • 1. Intrathoracic current flow during transthoracic defibrillation in dogs. Transcardiac current fraction.
    Deale OC; Lerman BB
    Circ Res; 1990 Dec; 67(6):1405-19. PubMed ID: 2245502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relation between transcardiac and transthoracic current during defibrillation in humans.
    Lerman BB; Deale OC
    Circ Res; 1990 Dec; 67(6):1420-6. PubMed ID: 2245503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The potential gradient field created by epicardial defibrillation electrodes in dogs.
    Chen PS; Wolf PD; Claydon FJ; Dixon EG; Vidaillet HJ; Danieley ND; Pilkington TC; Ideker RE
    Circulation; 1986 Sep; 74(3):626-36. PubMed ID: 3742760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of a new defibrillation pathway--the tongue-epigastric route. I. Experimental studies in dogs.
    Kerber RE; Hoyt R; Aronson A; Kieso R; Melton J
    J Am Coll Cardiol; 1983 Nov; 2(5):966-72. PubMed ID: 6630773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between canine transthoracic impedance and defibrillation threshold. Evidence for current-based defibrillation.
    Lerman BB; Halperin HR; Tsitlik JE; Brin K; Clark CW; Deale OC
    J Clin Invest; 1987 Sep; 80(3):797-803. PubMed ID: 3624489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transthoracic electrical impedance during external defibrillation: comparison of measured and modelled waveforms.
    Al Hatib F; Trendafilova E; Daskalov I
    Physiol Meas; 2000 Feb; 21(1):145-53. PubMed ID: 10720010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated impedance-based energy adjustment for defibrillation: experimental studies.
    Kerber RE; McPherson D; Charbonnier F; Kieso R; Hite P
    Circulation; 1985 Jan; 71(1):136-40. PubMed ID: 3964715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transthoracic defibrillation: effect of dual-pathway sequential pulse shocks and single-pathway biphasic pulse shocks in a canine model.
    Scott BD; Kallok MJ; Birkett C; Kieso RA; Kerber RE
    Am Heart J; 1993 Jan; 125(1):99-109. PubMed ID: 8417549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overlapping sequential pulses. A new waveform for transthoracic defibrillation.
    Kerber RE; Spencer KT; Kallok MJ; Birkett C; Smith R; Yoerger D; Kieso RA
    Circulation; 1994 May; 89(5):2369-79. PubMed ID: 8181163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transthoracic resistance in human defibrillation. Influence of body weight, chest size, serial shocks, paddle size and paddle contact pressure.
    Kerber RE; Grayzel J; Hoyt R; Marcus M; Kennedy J
    Circulation; 1981 Mar; 63(3):676-82. PubMed ID: 7460251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A three-dimensional finite element model of human transthoracic defibrillation: paddle placement and size.
    Camacho MA; Lehr JL; Eisenberg SR
    IEEE Trans Biomed Eng; 1995 Jun; 42(6):572-8. PubMed ID: 7790013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of high common mode voltage during transthoracic defibrillation.
    Deale OC; Ng KT; Kim EJ; Lerman BB
    IEEE Trans Biomed Eng; 1995 Dec; 42(12):1208-11. PubMed ID: 8550063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of electrode position and gel-application technique on predicted transcardiac current during transthoracic defibrillation.
    Caterine MR; Yoerger DM; Spencer KT; Miller SG; Kerber RE
    Ann Emerg Med; 1997 May; 29(5):588-95. PubMed ID: 9140241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of epicardial patch electrodes on transthoracic defibrillation.
    Lerman BB; Deale OC
    Circulation; 1990 Apr; 81(4):1409-14. PubMed ID: 2317917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Possibilities for predictive measurement of the transthoracic impedance in defibrillation.
    Krasteva V; Hatib FA; Trendafilova E; Daskalov I
    J Med Eng Technol; 2001; 25(5):195-200. PubMed ID: 11695659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A percutaneous catheter-based system for the measurement of potential gradients applicable to the study of transthoracic defibrillation.
    Rosborough JP; Deno DC; Walker RG; Niemann JT
    Pacing Clin Electrophysiol; 2007 Feb; 30(2):166-74. PubMed ID: 17338711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pediatric defibrillation: current flow is improved by using "adult" electrode paddles.
    Atkins DL; Kerber RE
    Pediatrics; 1994 Jul; 94(1):90-3. PubMed ID: 8008545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Refractory interval after transcardiac shocks during ventricular fibrillation.
    Sweeney RJ; Gill RM; Reid PR
    Circulation; 1996 Dec; 94(11):2947-52. PubMed ID: 8941125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skeletal muscle grids for assessing current distributions from defibrillation shocks.
    Schmidt J; Gatlin B; Eason J; Koomullil G; Pilkington T
    Crit Rev Biomed Eng; 1992; 20(1-2):121-39. PubMed ID: 1424684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determinants of successful transthoracic defibrillation and outcome in ventricular fibrillation.
    Dalzell GW; Adgey AA
    Br Heart J; 1991 Jun; 65(6):311-6. PubMed ID: 2054239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.