BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 22455021)

  • 1. From molten salts to room temperature ionic liquids: simulation studies on chloroaluminate systems.
    Salanne M; Siqueira LJ; Seitsonen AP; Madden PA; Kirchner B
    Faraday Discuss; 2012; 154():171-88; discussion 189-220, 465-71. PubMed ID: 22455021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Li+ solvation and transport properties in ionic liquid/lithium salt mixtures: a molecular dynamics simulation study.
    Li Z; Smith GD; Bedrov D
    J Phys Chem B; 2012 Oct; 116(42):12801-9. PubMed ID: 22978679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Studies on IR spectroscopy and quantum chemical calculation of chloroaluminate ionic liquids acidity].
    Wu Q; Han MH; Xin HL; Dong BQ; Jin Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Feb; 28(2):282-4. PubMed ID: 18479004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab Initio Simulations and Electronic Structure of Lithium-Doped Ionic Liquids: Structure, Transport, and Electrochemical Stability.
    Haskins JB; Bauschlicher CW; Lawson JW
    J Phys Chem B; 2015 Nov; 119(46):14705-19. PubMed ID: 26505208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational verification of two universal relations for simple ionic liquids. Kinetic properties of a model 2:1 molten salt.
    Armstrong JA; Ballone P
    J Phys Chem B; 2011 May; 115(17):4927-38. PubMed ID: 21476561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulation of imidazolium-based ionic liquids. II. Transport coefficients.
    Kowsari MH; Alavi S; Ashrafizaadeh M; Najafi B
    J Chem Phys; 2009 Jan; 130(1):014703. PubMed ID: 19140627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase behaviour, transport properties, and interactions in Li-salt doped ionic liquids.
    Pitawala J; Kim JK; Jacobsson P; Koch V; Croce F; Matic A
    Faraday Discuss; 2012; 154():71-80; discussion 81-96, 465-71. PubMed ID: 22455015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rechargeable aluminum batteries: effects of cations in ionic liquid electrolytes.
    Zhu G; Angell M; Pan CJ; Lin MC; Chen H; Huang CJ; Lin J; Achazi AJ; Kaghazchi P; Hwang BJ; Dai H
    RSC Adv; 2019 Apr; 9(20):11322-11330. PubMed ID: 35520252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aluminium electrodeposition in chloroaluminate ionic liquid.
    Zhang L; Wang E; Mu J; Yu X; Wang Q; Yang L; Zhao Z
    J Nanosci Nanotechnol; 2014 Aug; 14(8):6287-93. PubMed ID: 25936104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Dynamics Simulations of Polymer-Ionic Liquid (1-Ethyl-3-methylimidazolium Tetracyanoborate) Ternary Electrolyte for Sodium and Potassium Ion Batteries.
    de Souza RM; de Siqueira LJA; Karttunen M; Dias LG
    J Chem Inf Model; 2020 Feb; 60(2):485-499. PubMed ID: 31634431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of local effects for chloroaluminate ionic liquids on Diels-Alder reactions.
    Acevedo O
    J Mol Graph Model; 2009 Sep; 28(2):95-101. PubMed ID: 19419891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvation of uranyl(II), europium(III) and europium(II) cations in "basic" room-temperature ionic liquids: a theoretical study.
    Chaumont A; Wipff G
    Chemistry; 2004 Aug; 10(16):3919-30. PubMed ID: 15317055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass and charge transport in 1-alkyl-3-methylimidazolium triflate ionic liquids.
    Petrowsky M; Burba CM; Frech R
    J Chem Phys; 2013 Nov; 139(20):204502. PubMed ID: 24289359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the dynamics of ionic liquids: comparisons between electronically polarizable and nonpolarizable models II.
    Yan T; Wang Y; Knox C
    J Phys Chem B; 2010 May; 114(20):6886-904. PubMed ID: 20443608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic structure calculations and physicochemical experiments quantify the competitive liquid ion association and probe stabilisation effects for nitrobenzospiropyran in phosphonium-based ionic liquids.
    Thompson D; Coleman S; Diamond D; Byrne R
    Phys Chem Chem Phys; 2011 Apr; 13(13):6156-68. PubMed ID: 21350746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of equilibrium and transport properties of amino acid-based room temperature ionic liquids.
    Sirjoosingh A; Alavi S; Woo TK
    J Phys Chem B; 2009 Jun; 113(23):8103-13. PubMed ID: 19453132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tetraalkylphosphonium polyoxometalate ionic liquids: novel, organic-inorganic hybrid materials.
    Rickert PG; Antonio MR; Firestone MA; Kubatko KA; Szreder T; Wishart JF; Dietz ML
    J Phys Chem B; 2007 May; 111(18):4685-92. PubMed ID: 17474696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulations of the structure and transport properties of tetra-butylphosphonium amino acid ionic liquids.
    Kowsari MH; Alavi S; Najafi B; Gholizadeh K; Dehghanpisheh E; Ranjbar F
    Phys Chem Chem Phys; 2011 May; 13(19):8826-37. PubMed ID: 21455505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dielectric Relaxation of the Ionic Liquid 1-Ethyl-3-methylimidazolium Ethyl Sulfate: Microwave and Far-IR Properties.
    Dhumal NR; Kiefer J; Turton D; Wynne K; Kim HJ
    J Phys Chem B; 2017 May; 121(18):4845-4852. PubMed ID: 28440638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic liquids: the link to high-temperature molten salts?
    El Abedin SZ; Endres F
    Acc Chem Res; 2007 Nov; 40(11):1106-13. PubMed ID: 17521159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.