These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 22455062)

  • 41. Nanoconfined NaAlH4: prolific effects from increased surface area and pore volume.
    Nielsen TK; Javadian P; Polanski M; Besenbacher F; Bystrzycki J; Skibsted J; Jensen TR
    Nanoscale; 2014 Jan; 6(1):599-607. PubMed ID: 24247423
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-Performance Hydrogen Storage Nanoparticles Inside Hierarchical Porous Carbon Nanofibers with Stable Cycling.
    Xia G; Chen X; Zhao Y; Li X; Guo Z; Jensen CM; Gu Q; Yu X
    ACS Appl Mater Interfaces; 2017 May; 9(18):15502-15509. PubMed ID: 28436647
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nanoconfined NaAlH
    Huen P; Peru F; Charalambopoulou G; Steriotis TA; Jensen TR; Ravnsbæk DB
    ACS Omega; 2017 May; 2(5):1956-1967. PubMed ID: 31457554
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanistic understanding of CoO-catalyzed hydrogen desorption from a LiBH4·NH3-3LiH system.
    Zhang Y; Liu Y; Zhang X; Li Y; Gao M; Pan H
    Dalton Trans; 2015 Aug; 44(32):14514-22. PubMed ID: 26207564
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improved Dehydrogenation Properties of LiBH
    Zang L; Zhang Q; Li L; Huang Y; Chang X; Jiao L; Yuan H; Wang Y
    Chem Asian J; 2018 Jan; 13(1):99-105. PubMed ID: 29144606
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reversible storage of hydrogen in destabilized LiBH4.
    Vajo JJ; Skeith SL; Mertens F
    J Phys Chem B; 2005 Mar; 109(9):3719-22. PubMed ID: 16851415
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Understanding the role of vanadium in enhancing the low-temperature hydrogenation kinetics of an Mg thin film.
    Zheng S; Li ZP; Bendersky LA
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):6968-74. PubMed ID: 23869902
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Defying Thermodynamics: Stabilization of Alane Within Covalent Triazine Frameworks for Reversible Hydrogen Storage.
    Stavila V; Li S; Dun C; Marple MAT; Mason HE; Snider JL; Reynolds JE; El Gabaly F; Sugar JD; Spataru CD; Zhou X; Dizdar B; Majzoub EH; Chatterjee R; Yano J; Schlomberg H; Lotsch BV; Urban JJ; Wood BC; Allendorf MD
    Angew Chem Int Ed Engl; 2021 Dec; 60(49):25815-25824. PubMed ID: 34459093
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cost-Effective Hierarchical Catalysts for Promoting Hydrogen Release from Complex Hydrides.
    Yang CH; Hsu CP; Lee SL; Wang KW; Chang JK
    ChemSusChem; 2015 Aug; 8(16):2713-8. PubMed ID: 26150091
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Li
    Wang H; Cao H; Zhang W; Chen J; Wu H; Pistidda C; Ju X; Zhou W; Wu G; Etter M; Klassen T; Dornheim M; Chen P
    Chemistry; 2018 Jan; 24(6):1342-1347. PubMed ID: 29024174
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High loading nanoconfinement of V-decorated Mg with 1 nm carbon shells: hydrogen storage properties and catalytic mechanism.
    Chen M; Hu M; Xie X; Liu T
    Nanoscale; 2019 May; 11(20):10045-10055. PubMed ID: 31089586
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cobalt-catalyzed hydrogen desorption from the LiNH2-LiBH4 system.
    Tang WS; Wu G; Liu T; Wee AT; Yong CK; Xiong Z; Hor AT; Chen P
    Dalton Trans; 2008 May; (18):2395-9. PubMed ID: 18461193
    [TBL] [Abstract][Full Text] [Related]  

  • 53. First principle study of hydrogenation of MgB2: an important step toward reversible hydrogen storage in the coupled LiBH4/MgH2 system.
    Du AJ; Smith SC; Yao XD; Sun CH; Li L; Lu GQ
    J Nanosci Nanotechnol; 2009 Jul; 9(7):4388-91. PubMed ID: 19916462
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Thermal stability of Li2B12H12 and its role in the decomposition of LiBH4.
    Pitt MP; Paskevicius M; Brown DH; Sheppard DA; Buckley CE
    J Am Chem Soc; 2013 May; 135(18):6930-41. PubMed ID: 23581497
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hydrogen Desorption Properties of LiBH
    He Q; Zhu D; Wu X; Dong D; Xu M; Tong Z
    Molecules; 2019 May; 24(10):. PubMed ID: 31096547
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Industrial Ziegler-type hydrogenation catalysts made from Co(neodecanoate)2 or Ni(2-ethylhexanoate)2 and AlEt3: evidence for nanoclusters and sub-nanocluster or larger Ziegler-nanocluster based catalysis.
    Alley WM; Hamdemir IK; Wang Q; Frenkel AI; Li L; Yang JC; Menard LD; Nuzzo RG; Özkar S; Yih KH; Johnson KA; Finke RG
    Langmuir; 2011 May; 27(10):6279-94. PubMed ID: 21480617
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mg-Ni-La based small hydrogen storage tank: kinetics, reversibility and reaction mechanisms.
    Dansirima P; Ngamwongwan L; Suthirakun S; Utke O; Utke R
    RSC Adv; 2020 Sep; 10(55):33171-33177. PubMed ID: 35515041
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Flexible, Water-Resistant and Air-Stable LiBH
    Fan Y; Chen D; Yuan Z; Chen Q; Fan G; Zhao D; Liu B
    Front Chem; 2020; 8():45. PubMed ID: 32117873
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Exploring Ternary and Quaternary Mixtures in the LiBH
    Dematteis EM; Pistidda C; Dornheim M; Baricco M
    Chemphyschem; 2019 May; 20(10):1348-1359. PubMed ID: 30719807
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metal-Borohydride-Modified Zr(BH4 )4 ⋅8 NH3 : Low-Temperature Dehydrogenation Yielding Highly Pure Hydrogen.
    Huang J; Ouyang L; Gu Q; Yu X; Zhu M
    Chemistry; 2015 Oct; 21(42):14931-6. PubMed ID: 26315468
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.