BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 2245507)

  • 1. Regeneration of myocardial phosphocreatine in pigs despite continued moderate ischemia.
    Pantely GA; Malone SA; Rhen WS; Anselone CG; Arai A; Bristow J; Bristow JD
    Circ Res; 1990 Dec; 67(6):1481-93. PubMed ID: 2245507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myocardial high-energy phosphate and substrate metabolism in swine with moderate left ventricular hypertrophy.
    Massie BM; Schaefer S; Garcia J; McKirnan MD; Schwartz GG; Wisneski JA; Weiner MW; White FC
    Circulation; 1995 Mar; 91(6):1814-23. PubMed ID: 7882492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic adaptation to a gradual reduction in myocardial blood flow.
    Arai AE; Grauer SE; Anselone CG; Pantely GA; Bristow JD
    Circulation; 1995 Jul; 92(2):244-52. PubMed ID: 7600657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy metabolism and contractile function after 15 beats of moderate myocardial ischemia.
    Arai AE; Pantely GA; Thoma WJ; Anselone CG; Bristow JD
    Circ Res; 1992 Jun; 70(6):1137-45. PubMed ID: 1576734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relationships of high energy phosphates, tissue pH, and regional blood flow to diastolic distensibility in the ischemic dog myocardium.
    Momomura S; Ingwall JS; Parker JA; Sahagian P; Ferguson JJ; Grossman W
    Circ Res; 1985 Dec; 57(6):822-35. PubMed ID: 4064257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of short-term myocardial hibernation. Its limitation by the severity of ischemia and inotropic stimulation.
    Schulz R; Rose J; Martin C; Brodde OE; Heusch G
    Circulation; 1993 Aug; 88(2):684-95. PubMed ID: 8393390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time course and mechanisms of contractile dysfunction during acute myocardial ischemia.
    Guth BD; Schulz R; Heusch G
    Circulation; 1993 May; 87(5 Suppl):IV35-42. PubMed ID: 8485832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active downregulation of myocardial energy requirements during prolonged moderate ischemia in swine.
    Arai AE; Pantely GA; Anselone CG; Bristow J; Bristow JD
    Circ Res; 1991 Dec; 69(6):1458-69. PubMed ID: 1954670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of high arterial oxygen tension on function, blood flow distribution, and metabolism in ischemic myocardium.
    Cason BA; Wisneski JA; Neese RA; Stanley WC; Hickey RF; Shnier CB; Gertz EW
    Circulation; 1992 Feb; 85(2):828-38. PubMed ID: 1735173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recruitment of an inotropic reserve in moderately ischemic myocardium at the expense of metabolic recovery. A model of short-term hibernation.
    Schulz R; Guth BD; Pieper K; Martin C; Heusch G
    Circ Res; 1992 Jun; 70(6):1282-95. PubMed ID: 1576742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myocardial bioenergetics during acute hibernation.
    Zhang J; Ishibashi Y; Zhang Y; Eijgelshoven MH; Duncker DJ; Merkle H; Bache RJ; Ugurbil K; From AH
    Am J Physiol; 1997 Sep; 273(3 Pt 2):H1452-63. PubMed ID: 9321837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between myocardial metabolites and contractile abnormalities during graded regional ischemia. Phosphorus-31 nuclear magnetic resonance studies of porcine myocardium in vivo.
    Schaefer S; Schwartz GG; Gober JR; Wong AK; Camacho SA; Massie B; Weiner MW
    J Clin Invest; 1990 Mar; 85(3):706-13. PubMed ID: 2312722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo alterations of high-energy phosphates and intracellular pH during reversible ischemia in pigs: a 31P magnetic resonance spectroscopy study.
    Camacho SA; Lanzer P; Toy BJ; Gober J; Valenza M; Botvinick EH; Weiner MW
    Am Heart J; 1988 Sep; 116(3):701-8. PubMed ID: 3414485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myocardial metabolism during increased work states in the porcine left ventricle in vivo.
    Massie BM; Schwartz GG; Garcia J; Wisneski JA; Weiner MW; Owens T
    Circ Res; 1994 Jan; 74(1):64-73. PubMed ID: 8261596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inorganic phosphate content and free energy change of ATP hydrolysis in regional short-term hibernating myocardium.
    Martin C; Schulz R; Rose J; Heusch G
    Cardiovasc Res; 1998 Aug; 39(2):318-26. PubMed ID: 9798517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation between transmural high energy phosphate levels and myocardial blood flow in the presence of graded coronary stenosis.
    Path G; Robitaille PM; Merkle H; Tristani M; Zhang J; Garwood M; From AH; Bache RJ; Uğurbil K
    Circ Res; 1990 Sep; 67(3):660-73. PubMed ID: 2397574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial and temporal characteristics of the transmural distribution of collateral flow and energy metabolism during regional myocardial ischemia in the dog.
    Fukunami M; Yellon DM; Kudoh Y; Maxwell MP; Wyse RK; Hearse DJ
    Can J Cardiol; 1987 Mar; 3(2):94-103. PubMed ID: 3567712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regional myocardial metabolism of high-energy phosphates during isometric exercise in patients with coronary artery disease.
    Weiss RG; Bottomley PA; Hardy CJ; Gerstenblith G
    N Engl J Med; 1990 Dec; 323(23):1593-600. PubMed ID: 2233948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repeated short periods of regional myocardial ischemia: effect on local function and high energy phosphate levels.
    Hoffmeister HM; Mauser M; Schaper W
    Basic Res Cardiol; 1986; 81(4):361-72. PubMed ID: 3778416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transmural distribution of metabolic abnormalities and glycolytic activity during dobutamine-induced demand ischemia.
    Jameel MN; Wang X; Eijgelshoven MH; Mansoor A; Zhang J
    Am J Physiol Heart Circ Physiol; 2008 Jun; 294(6):H2680-6. PubMed ID: 18424629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.