These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 22455081)
1. A multidisciplinary combinatorial approach for tuning promising hydrogen storage materials towards automotive applications. Amieiro-Fonseca A; Ellis SR; Nuttall CJ; Hayden BE; Guerin S; Purdy G; Soulié JP; Callear SK; Culligan SD; David WI; Edwards PP; Jones MO; Johnson SR; Pohl AH Faraday Discuss; 2011; 151():369-84; discussion 385-97. PubMed ID: 22455081 [TBL] [Abstract][Full Text] [Related]
2. Catalytic Effect of Facile Synthesized TiH Zhang L; Lu X; Ji L; Yan N; Sun Z; Zhu X Nanomaterials (Basel); 2019 Sep; 9(10):. PubMed ID: 31554311 [No Abstract] [Full Text] [Related]
3. New Ti-decorated B40 fullerene as a promising hydrogen storage material. Dong H; Hou T; Lee ST; Li Y Sci Rep; 2015 May; 5():9952. PubMed ID: 25943256 [TBL] [Abstract][Full Text] [Related]
4. Ternary MgTiX-alloys: a promising route towards low-temperature, high-capacity, hydrogen-storage materials. Vermeulen P; van Thiel EF; Notten PH Chemistry; 2007; 13(35):9892-8. PubMed ID: 17879246 [TBL] [Abstract][Full Text] [Related]
5. Structural and kinetic investigation of the hydride composite Ca(BH4)2 + MgH2 system doped with NbF5 for solid-state hydrogen storage. Karimi F; Pranzas PK; Pistidda C; Puszkiel JA; Milanese C; Vainio U; Paskevicius M; Emmler T; Santoru A; Utke R; Tolkiehn M; Minella CB; Chaudhary AL; Boerries S; Buckley CE; Enzo S; Schreyer A; Klassen T; Dornheim M Phys Chem Chem Phys; 2015 Nov; 17(41):27328-42. PubMed ID: 26418174 [TBL] [Abstract][Full Text] [Related]
6. Catalytic effect of sandwich-like Ti Gao H; Liu Y; Zhu Y; Zhang J; Li L Nanotechnology; 2020 Mar; 31(11):115404. PubMed ID: 31747644 [TBL] [Abstract][Full Text] [Related]
7. Strain effects on hydrogen storage in Ti decorated pyridinic N-doped graphene. Kim D; Lee S; Jo S; Chung YC Phys Chem Chem Phys; 2013 Aug; 15(30):12757-61. PubMed ID: 23799404 [TBL] [Abstract][Full Text] [Related]
8. Promising electrochemical hydrogen storage properties of thick Mg-Pd films obtained by insertion of thin Ti interlayers. Xin G; Wang Y; Fu H; Li G; Zheng J; Li X Phys Chem Chem Phys; 2014 Feb; 16(7):3001-6. PubMed ID: 24394728 [TBL] [Abstract][Full Text] [Related]
9. A Unique Nanoflake-Shape Bimetallic Ti-Nb Oxide of Superior Catalytic Effect for Hydrogen Storage of MgH Xian K; Wu M; Gao M; Wang S; Li Z; Gao P; Yao Z; Liu Y; Sun W; Pan H Small; 2022 Oct; 18(43):e2107013. PubMed ID: 35253367 [TBL] [Abstract][Full Text] [Related]
10. Transition metal (Co, Ni) nanoparticles wrapped with carbon and their superior catalytic activities for the reversible hydrogen storage of magnesium hydride. Huang X; Xiao X; Zhang W; Fan X; Zhang L; Cheng C; Li S; Ge H; Wang Q; Chen L Phys Chem Chem Phys; 2017 Feb; 19(5):4019-4029. PubMed ID: 28106897 [TBL] [Abstract][Full Text] [Related]
11. In Situ Construction of Interface with Photothermal and Mutual Catalytic Effect for Efficient Solar-Driven Reversible Hydrogen Storage of MgH Hu X; Chen X; Zhang X; Meng Y; Xia G; Yu X; Sun D; Fang F Adv Sci (Weinh); 2024 Jun; 11(22):e2400274. PubMed ID: 38520071 [TBL] [Abstract][Full Text] [Related]
12. Improved hydrogen storage properties of MgH Wang Y; Ding Z; Li X; Ren S; Zhou S; Zhang H; Li Y; Han S Dalton Trans; 2020 Mar; 49(11):3495-3502. PubMed ID: 32104875 [TBL] [Abstract][Full Text] [Related]
13. Heterostructures Built in Metal Hydrides for Advanced Hydrogen Storage Reversibility. Wang Y; Chen X; Zhang H; Xia G; Sun D; Yu X Adv Mater; 2020 Aug; 32(31):e2002647. PubMed ID: 32588944 [TBL] [Abstract][Full Text] [Related]
14. Conductive Boron-Doped Graphene as an Ideal Material for Electrocatalytically Switchable and High-Capacity Hydrogen Storage. Tan X; Tahini HA; Smith SC ACS Appl Mater Interfaces; 2016 Dec; 8(48):32815-32822. PubMed ID: 27934167 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of the Hydrogen-Storage Properties of MgH2 by the Addition of Ni, NaAlH4, Ti, and CNT via Reactive Mechanical Grinding. Kwak YJ; Lee SH; Lee BS; Park HR; Song MY J Nanosci Nanotechnol; 2015 Nov; 15(11):8763-72. PubMed ID: 26726591 [TBL] [Abstract][Full Text] [Related]
17. H2 storage materials (22 KJ/mol) using organometallic Ti fragments as sigma-H2 binding sites. Hamaed A; Trudeau M; Antonelli DM J Am Chem Soc; 2008 Jun; 130(22):6992-9. PubMed ID: 18461937 [TBL] [Abstract][Full Text] [Related]
18. Kinetic limitations of the Mg(2)Si system for reversible hydrogen storage. Kelly ST; Van Atta SL; Vajo JJ; Olson GL; Clemens BM Nanotechnology; 2009 May; 20(20):204017. PubMed ID: 19420665 [TBL] [Abstract][Full Text] [Related]
20. Titanium Hydride Nanoplates Enable 5 wt% of Reversible Hydrogen Storage by Sodium Alanate below 80°C. Ren Z; Zhang X; Li HW; Huang Z; Hu J; Gao M; Pan H; Liu Y Research (Wash D C); 2021; 2021():9819176. PubMed ID: 34993488 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]