These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 22455612)

  • 1. Biomimetic dual sensing-actuators based on conducting polymers. Galvanostatic theoretical model for actuators sensing temperature.
    Otero TF; Sanchez JJ; Martinez JG
    J Phys Chem B; 2012 May; 116(17):5279-90. PubMed ID: 22455612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic dual sensing-actuators: theoretical description. Sensing electrolyte concentration and driving current.
    Martinez JG; Otero TF
    J Phys Chem B; 2012 Aug; 116(30):9223-30. PubMed ID: 22735073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemistry of carbon nanotubes: reactive processes, dual sensing-actuating properties and devices.
    Martínez JG; Sugino T; Asaka K; Otero TF
    Chemphyschem; 2012 Jun; 13(8):2108-14. PubMed ID: 22447630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensing and tactile artificial muscles from reactive materials.
    Conzuelo LV; Arias-Pardilla J; Cauich-Rodríguez JV; Smit MA; Otero TF
    Sensors (Basel); 2010; 10(4):2638-74. PubMed ID: 22319265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive conducting polymers as actuating sensors and tactile muscles.
    Otero TF
    Bioinspir Biomim; 2008 Sep; 3(3):035004. PubMed ID: 18667760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The application of conducting polymers to a biorobotic fin propulsor.
    Tangorra J; Anquetil P; Fofonoff T; Chen A; Del Zio M; Hunter I
    Bioinspir Biomim; 2007 Jun; 2(2):S6-17. PubMed ID: 17671330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic intracellular matrix (ICM) materials, properties and functions. Full integration of actuators and sensors.
    Otero TF; Martinez JG
    J Mater Chem B; 2013 Jan; 1(1):26-38. PubMed ID: 32260609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the electrolyte concentration and substrate on conducting polymer actuators.
    Martinez JG; Otero TF; Jager EW
    Langmuir; 2014 Apr; 30(13):3894-904. PubMed ID: 24605916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Work behaviors of artificial muscle based on cation driven polypyrrole.
    Fujisue H; Sendai T; Yamato K; Takashima W; Kaneto K
    Bioinspir Biomim; 2007 Jun; 2(2):S1-5. PubMed ID: 17671325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical analysis of muscle-like ionic polymer actuators.
    Enikov ET; Seo GS
    Biotechnol Prog; 2006; 22(1):96-105. PubMed ID: 16454498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation and analytical potential of a photo-responsive polymeric material based on spiropyran.
    Byrne R; Ventura C; Benito Lopez F; Walther A; Heise A; Diamond D
    Biosens Bioelectron; 2010 Dec; 26(4):1392-8. PubMed ID: 20724136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifunctionality of Polypyrrole Polyethyleneoxide Composites: Concurrent Sensing, Actuation and Energy Storage.
    Khuyen NQ; Kiefer R; Zondaka Z; Anbarjafari G; Peikolainen AL; Otero TF; Tamm T
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32927713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conducting polymers for electrochemical DNA sensing.
    Peng H; Zhang L; Soeller C; Travas-Sejdic J
    Biomaterials; 2009 Apr; 30(11):2132-48. PubMed ID: 19147223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishment of a biomimetic device based on tri-layer polymer actuators--propulsion fins.
    Alici G; Spinks G; Huynh NN; Sarmadi L; Minato R
    Bioinspir Biomim; 2007 Jun; 2(2):S18-30. PubMed ID: 17671326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous Sensing and Actuating Capabilities of a Triple-Layer Biomimetic Muscle for Soft Robotics.
    García-Córdova F; Guerrero-González A; Zueco J; Cabrera-Lozoya A
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymeric materials as artificial muscles: an overview.
    Ariano P; Accardo D; Lombardi M; Bocchini S; Draghi L; De Nardo L; Fino P
    J Appl Biomater Funct Mater; 2015 Mar; 13(1):1-9. PubMed ID: 24700263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A redox-generated biomimetic membrane potential across polypyrrole films.
    Nie X; Xiao T; Liu Z
    Chem Commun (Camb); 2019 Aug; 55(67):10023-10026. PubMed ID: 31378804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conducting polymer artificial muscle fibres: toward an open air linear actuation.
    Plesse C; Vidal F; Teyssié D; Chevrot C
    Chem Commun (Camb); 2010 May; 46(17):2910-2. PubMed ID: 20386819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel Mn-containing conducting metallopolymer obtained by electropolymerization in aqueous solution of a tetranuclear oxo-bridged manganese complex.
    Martin CS; Teixeira MF
    Dalton Trans; 2011 Jul; 40(27):7133-6. PubMed ID: 21655614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exchanged cations and water during reactions in polypyrrole macroions from artificial muscles.
    Valero L; Otero TF; Martínez JG
    Chemphyschem; 2014 Feb; 15(2):293-301. PubMed ID: 24446168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.