BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22455619)

  • 1. Folding mechanism of an extremely thermostable (βα)(8)-barrel enzyme: a high kinetic barrier protects the protein from denaturation.
    Carstensen L; Zoldák G; Schmid FX; Sterner R
    Biochemistry; 2012 Apr; 51(16):3420-32. PubMed ID: 22455619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conservation of the folding mechanism between designed primordial (βα)8-barrel proteins and their modern descendant.
    Carstensen L; Sperl JM; Bocola M; List F; Schmid FX; Sterner R
    J Am Chem Soc; 2012 Aug; 134(30):12786-91. PubMed ID: 22758610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissection of a (betaalpha)8-barrel enzyme into two folded halves.
    Höcker B; Beismann-Driemeyer S; Hettwer S; Lustig A; Sterner R
    Nat Struct Biol; 2001 Jan; 8(1):32-6. PubMed ID: 11135667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilisation of a (betaalpha)8-barrel protein designed from identical half barrels.
    Seitz T; Bocola M; Claren J; Sterner R
    J Mol Biol; 2007 Sep; 372(1):114-29. PubMed ID: 17631894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mimicking enzyme evolution by generating new (betaalpha)8-barrels from (betaalpha)4-half-barrels.
    Höcker B; Claren J; Sterner R
    Proc Natl Acad Sci U S A; 2004 Nov; 101(47):16448-53. PubMed ID: 15539462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clusters of branched aliphatic side chains serve as cores of stability in the native state of the HisF TIM barrel protein.
    Gangadhara BN; Laine JM; Kathuria SV; Massi F; Matthews CR
    J Mol Biol; 2013 Mar; 425(6):1065-81. PubMed ID: 23333740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining ancestral sequence reconstruction with protein design to identify an interface hotspot in a key metabolic enzyme complex.
    Holinski A; Heyn K; Merkl R; Sterner R
    Proteins; 2017 Feb; 85(2):312-321. PubMed ID: 27936490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational and experimental evidence for the evolution of a (beta alpha)8-barrel protein from an ancestral quarter-barrel stabilised by disulfide bonds.
    Richter M; Bosnali M; Carstensen L; Seitz T; Durchschlag H; Blanquart S; Merkl R; Sterner R
    J Mol Biol; 2010 May; 398(5):763-73. PubMed ID: 20363228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The burst-phase intermediate in the refolding of beta-lactoglobulin studied by stopped-flow circular dichroism and absorption spectroscopy.
    Kuwajima K; Yamaya H; Sugai S
    J Mol Biol; 1996 Dec; 264(4):806-22. PubMed ID: 8980687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for the existence of elaborate enzyme complexes in the Paleoarchean era.
    Reisinger B; Sperl J; Holinski A; Schmid V; Rajendran C; Carstensen L; Schlee S; Blanquart S; Merkl R; Sterner R
    J Am Chem Soc; 2014 Jan; 136(1):122-9. PubMed ID: 24364418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folding mechanism of the alpha-subunit of tryptophan synthase, an alpha/beta barrel protein: global analysis highlights the interconversion of multiple native, intermediate, and unfolded forms through parallel channels.
    Bilsel O; Zitzewitz JA; Bowers KE; Matthews CR
    Biochemistry; 1999 Jan; 38(3):1018-29. PubMed ID: 9893998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102.
    Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS
    Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Establishing catalytic activity on an artificial (βα)8-barrel protein designed from identical half-barrels.
    Sperl JM; Rohweder B; Rajendran C; Sterner R
    FEBS Lett; 2013 Sep; 587(17):2798-805. PubMed ID: 23806364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dissection of the folding mechanism of the alpha subunit of tryptophan synthase: an amino-terminal autonomous folding unit controls several rate-limiting steps in the folding of a single domain protein.
    Zitzewitz JA; Matthews CR
    Biochemistry; 1999 Aug; 38(31):10205-14. PubMed ID: 10433729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equilibrium and kinetics of the folding of equine lysozyme studied by circular dichroism spectroscopy.
    Mizuguchi M; Arai M; Ke Y; Nitta K; Kuwajima K
    J Mol Biol; 1998; 283(1):265-77. PubMed ID: 9761689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of ligand binding in the kinetic folding mechanism of human p21(H-ras) protein.
    Zhang J; Matthews CR
    Biochemistry; 1998 Oct; 37(42):14891-9. PubMed ID: 9778365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significance of the Protein Interface Configuration for Allostery in Imidazole Glycerol Phosphate Synthase.
    Kneuttinger AC; Rajendran C; Simeth NA; Bruckmann A; König B; Sterner R
    Biochemistry; 2020 Jul; 59(29):2729-2742. PubMed ID: 32633500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution crystal structure of an artificial (betaalpha)(8)-barrel protein designed from identical half-barrels.
    Höcker B; Lochner A; Seitz T; Claren J; Sterner R
    Biochemistry; 2009 Feb; 48(6):1145-7. PubMed ID: 19166324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the folding and unfolding reactions of single-chain monellin: evidence for multiple intermediates and competing pathways.
    Patra AK; Udgaonkar JB
    Biochemistry; 2007 Oct; 46(42):11727-43. PubMed ID: 17902706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.