BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 22455734)

  • 1. Microporous polycarbazole with high specific surface area for gas storage and separation.
    Chen Q; Luo M; Hammershøj P; Zhou D; Han Y; Laursen BW; Yan CG; Han BH
    J Am Chem Soc; 2012 Apr; 134(14):6084-7. PubMed ID: 22455734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrogen-containing microporous conjugated polymers via carbazole-based oxidative coupling polymerization: preparation, porosity, and gas uptake.
    Chen Q; Liu DP; Luo M; Feng LJ; Zhao YC; Han BH
    Small; 2014 Jan; 10(2):308-15. PubMed ID: 23913850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled synthesis of conjugated polycarbazole polymers via structure tuning for gas storage and separation applications.
    Li G; Qin L; Yao C; Xu Y
    Sci Rep; 2017 Nov; 7(1):15394. PubMed ID: 29133792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High surface area microporous carbon materials for cryogenic hydrogen storage synthesized using new template-based and activation-based approaches.
    Meisner GP; Hu Q
    Nanotechnology; 2009 May; 20(20):204023. PubMed ID: 19420671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly selective and stable carbon dioxide uptake in polyindole-derived microporous carbon materials.
    Saleh M; Tiwari JN; Kemp KC; Yousuf M; Kim KS
    Environ Sci Technol; 2013 May; 47(10):5467-73. PubMed ID: 23621280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile Synthesis of a Pentiptycene-Based Highly Microporous Organic Polymer for Gas Storage and Water Treatment.
    Luo S; Zhang Q; Zhang Y; Weaver KP; Phillip WA; Guo R
    ACS Appl Mater Interfaces; 2018 May; 10(17):15174-15182. PubMed ID: 29658699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile approach to preparing microporous organic polymers through benzoin condensation.
    Zhao YC; Wang T; Zhang LM; Cui Y; Han BH
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6975-81. PubMed ID: 23194067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An interpenetrated metal-organic framework and its gas storage behavior: simulation and experiment.
    Frahm D; Fischer M; Hoffmann F; Fröba M
    Inorg Chem; 2011 Nov; 50(21):11055-63. PubMed ID: 21985253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microporous polystyrene particles for selective carbon dioxide capture.
    Kaliva M; Armatas GS; Vamvakaki M
    Langmuir; 2012 Feb; 28(5):2690-5. PubMed ID: 22214360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel (3,4,6)-connected metal-organic framework with high stability and gas-uptake capability.
    Hou C; Liu Q; Fan J; Zhao Y; Wang P; Sun WY
    Inorg Chem; 2012 Aug; 51(15):8402-8. PubMed ID: 22804350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expanded porous MOF-505 analogue exhibiting large hydrogen storage capacity and selective carbon dioxide adsorption.
    Zheng B; Yun R; Bai J; Lu Z; Du L; Li Y
    Inorg Chem; 2013 Mar; 52(6):2823-9. PubMed ID: 23458072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microporous organic polymers with ketal linkages: synthesis, characterization, and gas sorption properties.
    Han Y; Zhang LM; Zhao YC; Wang T; Han BH
    ACS Appl Mater Interfaces; 2013 May; 5(10):4166-72. PubMed ID: 23629044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microporous Polymers from a Carbazole-Based Triptycene Monomer: Synthesis and Their Applications for Gas Uptake.
    Zhai TL; Tan L; Luo Y; Liu JM; Tan B; Yang XL; Xu HB; Zhang C
    Chem Asian J; 2016 Jan; 11(2):294-8. PubMed ID: 26563911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly porous metal-organic framework containing a novel organosilicon linker--a promising material for hydrogen storage.
    Wenzel SE; Fischer M; Hoffmann F; Fröba M
    Inorg Chem; 2009 Jul; 48(14):6559-65. PubMed ID: 19530692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of functional thienyl-phosphine microporous polymers for carbon dioxide capture.
    Chen X; Qiao S; Du Z; Zhou Y; Yang R
    Macromol Rapid Commun; 2013 Jul; 34(14):1181-5. PubMed ID: 23757097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene oxide-based benzimidazole-crosslinked networks for high-performance supercapacitors.
    Cui Y; Cheng QY; Wu H; Wei Z; Han BH
    Nanoscale; 2013 Sep; 5(18):8367-74. PubMed ID: 23793833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triptycene-based microporous polymer with pending tetrazole moieties for CO2 -capture application.
    Liu L; Zhang J
    Macromol Rapid Commun; 2013 Dec; 34(23-24):1833-7. PubMed ID: 24214288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of CO(2), CH(4), N(2)O, and N(2) on MOF-5, MOF-177, and zeolite 5A.
    Saha D; Bao Z; Jia F; Deng S
    Environ Sci Technol; 2010 Mar; 44(5):1820-6. PubMed ID: 20143826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yeast-based microporous carbon materials for carbon dioxide capture.
    Shen W; He Y; Zhang S; Li J; Fan W
    ChemSusChem; 2012 Jul; 5(7):1274-9. PubMed ID: 22696279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of porosity by using isoreticular zeolitic imidazolate frameworks (IRZIFs) as a template for porous carbon synthesis.
    Pachfule P; Biswal BP; Banerjee R
    Chemistry; 2012 Sep; 18(36):11399-408. PubMed ID: 22829466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.