BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 22455734)

  • 41. High capacity gas capture and selectivity properties of triazatruxene-based ultramicroporous hyper-crosslinked covalent polymer.
    Sadak AE
    Turk J Chem; 2021; 45(3):868-878. PubMed ID: 34385873
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Flexible Microporous Hydrogen-Bonded Organic Framework for Gas Sorption and Separation.
    Wang H; Li B; Wu H; Hu TL; Yao Z; Zhou W; Xiang S; Chen B
    J Am Chem Soc; 2015 Aug; 137(31):9963-70. PubMed ID: 26214340
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Catalyst-free preparation of melamine-based microporous polymer networks through Schiff base chemistry.
    Schwab MG; Fassbender B; Spiess HW; Thomas A; Feng X; Müllen K
    J Am Chem Soc; 2009 Jun; 131(21):7216-7. PubMed ID: 19469570
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tetraphenyladamantane-based microporous polyimide for adsorption of carbon dioxide, hydrogen, organic and water vapors.
    Shen C; Bao Y; Wang Z
    Chem Commun (Camb); 2013 Apr; 49(32):3321-3. PubMed ID: 23493785
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thermal conversion of alkaline lignin and its structured derivatives to porous carbonized materials.
    Kijima M; Hirukawa T; Hanawa F; Hata T
    Bioresour Technol; 2011 May; 102(10):6279-85. PubMed ID: 21463939
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine.
    Demessence A; D'Alessandro DM; Foo ML; Long JR
    J Am Chem Soc; 2009 Jul; 131(25):8784-6. PubMed ID: 19505094
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Adsorption of CO2 and CH4 on a magnesium-based metal organic framework.
    Bao Z; Yu L; Ren Q; Lu X; Deng S
    J Colloid Interface Sci; 2011 Jan; 353(2):549-56. PubMed ID: 20980016
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthesis of 1,3,5,7-tetrakis(4-cyanatophenyl)adamantane and its microporous polycyanurate network for adsorption of organic vapors, hydrogen and carbon dioxide.
    Shen C; Yu H; Wang Z
    Chem Commun (Camb); 2014 Oct; 50(76):11238-41. PubMed ID: 25116703
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A highly porous 4,4-paddlewheel-connected NbO-type metal-organic framework with a large gas-uptake capacity.
    Wang Z; Zheng B; Liu H; Yi P; Li X; Yu X; Yun R
    Dalton Trans; 2013 Aug; 42(31):11304-11. PubMed ID: 23817963
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synthesis of microporous boron-substituted carbon (b/c) materials using polymeric precursors for hydrogen physisorption.
    Chung TC; Jeong Y; Chen Q; Kleinhammes A; Wu Y
    J Am Chem Soc; 2008 May; 130(21):6668-9. PubMed ID: 18454522
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metal Microporous Aromatic Polymers with Improved Performance for Small Gas Storage.
    Fu X; Zhang Y; Gu S; Zhu Y; Yu G; Pan C; Wang Z; Hu Y
    Chemistry; 2015 Sep; 21(38):13357-63. PubMed ID: 26213114
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A porous framework polymer based on a zinc(II) 4,4'-bipyridine-2,6,2',6'-tetracarboxylate: synthesis, structure, and "zeolite-like" behaviors.
    Lin X; Blake AJ; Wilson C; Sun XZ; Champness NR; George MW; Hubberstey P; Mokaya R; Schröder M
    J Am Chem Soc; 2006 Aug; 128(33):10745-53. PubMed ID: 16910669
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High hydrogen storage capacity of porous carbons prepared by using activated carbon.
    Wang H; Gao Q; Hu J
    J Am Chem Soc; 2009 May; 131(20):7016-22. PubMed ID: 19405471
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis and hydrogen storage properties of Be(12)(OH)(12)(1,3,5-benzenetribenzoate)(4).
    Sumida K; Hill MR; Horike S; Dailly A; Long JR
    J Am Chem Soc; 2009 Oct; 131(42):15120-1. PubMed ID: 19799422
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Thickness controllable hypercrosslinked porous polymer nanofilm with high CO
    Shi P; Chen X; Sun Z; Li C; Xu Z; Jiang X; Jiang B
    J Colloid Interface Sci; 2020 Mar; 563():272-280. PubMed ID: 31881492
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CO2-filling capacity and selectivity of carbon nanopores: synthesis, texture, and pore-size distribution from quenched-solid density functional theory (QSDFT).
    Hu X; Radosz M; Cychosz KA; Thommes M
    Environ Sci Technol; 2011 Aug; 45(16):7068-74. PubMed ID: 21721529
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Preparation and gas storage of high surface area microporous carbon derived from biomass source cornstalks.
    Zhang F; Ma H; Chen J; Li GD; Zhang Y; Chen JS
    Bioresour Technol; 2008 Jul; 99(11):4803-8. PubMed ID: 17967533
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High CO2-capture ability of a porous organic polymer bifunctionalized with carboxy and triazole groups.
    Xie LH; Suh MP
    Chemistry; 2013 Aug; 19(35):11590-7. PubMed ID: 23881821
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microporous Polycarbazole Materials: From Preparation and Properties to Applications.
    Chen Q; Han BH
    Macromol Rapid Commun; 2018 May; 39(9):e1800040. PubMed ID: 29575467
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nitrogen-Rich Conjugated Microporous Polymers: Facile Synthesis, Efficient Gas Storage, and Heterogeneous Catalysis.
    Liao Y; Cheng Z; Zuo W; Thomas A; Faul CFJ
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38390-38400. PubMed ID: 29043769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.