These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 22455906)
1. Response to a pure tone in a nonlinear mechanical-electrical-acoustical model of the cochlea. Meaud J; Grosh K Biophys J; 2012 Mar; 102(6):1237-46. PubMed ID: 22455906 [TBL] [Abstract][Full Text] [Related]
2. The effect of tectorial membrane and basilar membrane longitudinal coupling in cochlear mechanics. Meaud J; Grosh K J Acoust Soc Am; 2010 Mar; 127(3):1411-21. PubMed ID: 20329841 [TBL] [Abstract][Full Text] [Related]
3. Chlorpromazine alters cochlear mechanics and amplification: in vivo evidence for a role of stiffness modulation in the organ of corti. Zheng J; Deo N; Zou Y; Grosh K; Nuttall AL J Neurophysiol; 2007 Feb; 97(2):994-1004. PubMed ID: 17122316 [TBL] [Abstract][Full Text] [Related]
4. Active nonlinear mechanics of the organ of Corti including the stereocilia-tectorial membrane complex. Böhnke F; von Mikusch-Buchberg J; Arnold W ORL J Otorhinolaryngol Relat Spec; 1999; 61(5):311-7. PubMed ID: 10529653 [TBL] [Abstract][Full Text] [Related]
6. Role of inner and outer hair cells in mechanical frequency selectivity of the cochlea. Strelioff D; Flock A; Minser KE Hear Res; 1985 May; 18(2):169-75. PubMed ID: 4044418 [TBL] [Abstract][Full Text] [Related]
7. Contribution of outer hair cell bending to stereocilium deflection in the cochlea. Li H; Lim KM Hear Res; 2007 Oct; 232(1-2):20-8. PubMed ID: 17629426 [TBL] [Abstract][Full Text] [Related]
8. A model of cochlear micromechanics. Fukazawa T Hear Res; 1997 Nov; 113(1-2):182-90. PubMed ID: 9387997 [TBL] [Abstract][Full Text] [Related]
9. How are inner hair cells stimulated? Evidence for multiple mechanical drives. Guinan JJ Hear Res; 2012 Oct; 292(1-2):35-50. PubMed ID: 22959529 [TBL] [Abstract][Full Text] [Related]
10. Distortion product emissions from a cochlear model with nonlinear mechanoelectrical transduction in outer hair cells. Liu YW; Neely ST J Acoust Soc Am; 2010 Apr; 127(4):2420-32. PubMed ID: 20370025 [TBL] [Abstract][Full Text] [Related]
11. Two-Dimensional Cochlear Micromechanics Measured In Vivo Demonstrate Radial Tuning within the Mouse Organ of Corti. Lee HY; Raphael PD; Xia A; Kim J; Grillet N; Applegate BE; Ellerbee Bowden AK; Oghalai JS J Neurosci; 2016 Aug; 36(31):8160-73. PubMed ID: 27488636 [TBL] [Abstract][Full Text] [Related]
12. Tectorial membrane: a possible sharpening effect on the frequency analysis in the cochlea. Zwislocki JJ Acta Otolaryngol; 1979; 87(3-4):267-9. PubMed ID: 443008 [TBL] [Abstract][Full Text] [Related]
13. Optimal electrical properties of outer hair cells ensure cochlear amplification. Nam JH; Fettiplace R PLoS One; 2012; 7(11):e50572. PubMed ID: 23209783 [TBL] [Abstract][Full Text] [Related]
14. Electromotile hearing: evidence from basilar membrane motion and otoacoustic emissions. Nuttall AL; Ren T Hear Res; 1995 Dec; 92(1-2):170-7. PubMed ID: 8647740 [TBL] [Abstract][Full Text] [Related]
15. The interplay of organ-of-Corti vibrational modes, not tectorial- membrane resonance, sets outer-hair-cell stereocilia phase to produce cochlear amplification. Guinan JJ Hear Res; 2020 Sep; 395():108040. PubMed ID: 32784038 [TBL] [Abstract][Full Text] [Related]
16. A mechano-electro-acoustical model for the cochlea: response to acoustic stimuli. Ramamoorthy S; Deo NV; Grosh K J Acoust Soc Am; 2007 May; 121(5 Pt1):2758-73. PubMed ID: 17550176 [TBL] [Abstract][Full Text] [Related]
17. A micromechanical model of the cochlea with radial movement of the tectorial membrane. Fukazawa T; Ishida K; Murai Y Hear Res; 1999 Nov; 137(1-2):59-67. PubMed ID: 10545634 [TBL] [Abstract][Full Text] [Related]
18. Vibration responses of the organ of Corti and the tectorial membrane to electrical stimulation. Nowotny M; Gummer AW J Acoust Soc Am; 2011 Dec; 130(6):3852-72. PubMed ID: 22225042 [TBL] [Abstract][Full Text] [Related]