These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 22455930)

  • 1. Residue-specific α-helix propensities from molecular simulation.
    Best RB; de Sancho D; Mittal J
    Biophys J; 2012 Mar; 102(6):1462-7. PubMed ID: 22455930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved side-chain torsion potentials for the Amber ff99SB protein force field.
    Lindorff-Larsen K; Piana S; Palmo K; Maragakis P; Klepeis JL; Dror RO; Shaw DE
    Proteins; 2010 Jun; 78(8):1950-8. PubMed ID: 20408171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein simulations with an optimized water model: cooperative helix formation and temperature-induced unfolded state collapse.
    Best RB; Mittal J
    J Phys Chem B; 2010 Nov; 114(46):14916-23. PubMed ID: 21038907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical Assessment of Current Force Fields. Short Peptide Test Case.
    Vymětal J; Vondrášek J
    J Chem Theory Comput; 2013 Jan; 9(1):441-51. PubMed ID: 26589046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of force fields on the conformational and dynamic properties of amyloid β(1-40) dimer explored by replica exchange molecular dynamics simulations.
    Watts CR; Gregory A; Frisbie C; Lovas S
    Proteins; 2018 Mar; 86(3):279-300. PubMed ID: 29235155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulation of triclinic lysozyme in a crystal lattice.
    Janowski PA; Liu C; Deckman J; Case DA
    Protein Sci; 2016 Jan; 25(1):87-102. PubMed ID: 26013419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noncharged amino acid residues at the solvent-exposed positions in the middle and at the C terminus of the alpha-helix have the same helical propensity.
    Ermolenko DN; Richardson JM; Makhatadze GI
    Protein Sci; 2003 Jun; 12(6):1169-76. PubMed ID: 12761387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Secondary Structure Formation Using 10 Different Force Fields in Microsecond Molecular Dynamics Simulations.
    Cino EA; Choy WY; Karttunen M
    J Chem Theory Comput; 2012 Aug; 8(8):2725-2740. PubMed ID: 22904695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis of amino acid alpha helix propensity.
    Blaber M; Zhang XJ; Matthews BW
    Science; 1993 Jun; 260(5114):1637-40. PubMed ID: 8503008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Residue-specific force field based on protein coil library. RSFF2: modification of AMBER ff99SB.
    Zhou CY; Jiang F; Wu YD
    J Phys Chem B; 2015 Jan; 119(3):1035-47. PubMed ID: 25358113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of alpha-helix propensity within the context of a folded protein. Sites 44 and 131 in bacteriophage T4 lysozyme.
    Blaber M; Zhang XJ; Lindstrom JD; Pepiot SD; Baase WA; Matthews BW
    J Mol Biol; 1994 Jan; 235(2):600-24. PubMed ID: 8289284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamics of helix formation in small peptides of varying length in vacuo, in implicit solvent, and in explicit solvent.
    Wang X; Deng B; Sun Z
    J Mol Model; 2018 Dec; 25(1):3. PubMed ID: 30542771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One Peptide Reveals the Two Faces of α-Helix Unfolding-Folding Dynamics.
    Jesus CSH; Cruz PF; Arnaut LG; Brito RMM; Serpa C
    J Phys Chem B; 2018 Apr; 122(14):3790-3800. PubMed ID: 29558133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folding of a helix is critically stabilized by polarization of backbone hydrogen bonds: study in explicit water.
    Duan LL; Gao Y; Mei Y; Zhang QG; Tang B; Zhang JZ
    J Phys Chem B; 2012 Mar; 116(10):3430-5. PubMed ID: 22369598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB.
    Maier JA; Martinez C; Kasavajhala K; Wickstrom L; Hauser KE; Simmerling C
    J Chem Theory Comput; 2015 Aug; 11(8):3696-713. PubMed ID: 26574453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of individual amino acids on the fast folding dynamics of alpha-helical peptides.
    Gooding EA; Ramajo AP; Wang J; Palmer C; Fouts E; Volk M
    Chem Commun (Camb); 2005 Dec; (48):5985-7. PubMed ID: 16333502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational Preferences of an Intrinsically Disordered Protein Domain: A Case Study for Modern Force Fields.
    Gopal SM; Wingbermühle S; Schnatwinkel J; Juber S; Herrmann C; Schäfer LV
    J Phys Chem B; 2021 Jan; 125(1):24-35. PubMed ID: 33382616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct assessment of the α-helix nucleation time.
    Serrano AL; Tucker MJ; Gai F
    J Phys Chem B; 2011 Jun; 115(22):7472-8. PubMed ID: 21568273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple alanine replacements within alpha-helix 126-134 of T4 lysozyme have independent, additive effects on both structure and stability.
    Zhang XJ; Baase WA; Matthews BW
    Protein Sci; 1992 Jun; 1(6):761-76. PubMed ID: 1304917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-based thermodynamic scale of alpha-helix propensities in amino acids.
    Luque I; Mayorga OL; Freire E
    Biochemistry; 1996 Oct; 35(42):13681-8. PubMed ID: 8885848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.