These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 22455930)

  • 41. Developments and Applications of Coil-Library-Based Residue-Specific Force Fields for Molecular Dynamics Simulations of Peptides and Proteins.
    Jiang F; Wu HN; Kang W; Wu YD
    J Chem Theory Comput; 2019 May; 15(5):2761-2773. PubMed ID: 30620582
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of side chain conformations on local conformational features of amino acids and implication for force field development.
    Jiang F; Han W; Wu YD
    J Phys Chem B; 2010 May; 114(17):5840-50. PubMed ID: 20392111
    [TBL] [Abstract][Full Text] [Related]  

  • 43. What is the time scale for α-helix nucleation?
    De Sancho D; Best RB
    J Am Chem Soc; 2011 May; 133(17):6809-16. PubMed ID: 21480610
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Helix propensities of basic amino acids increase with the length of the side-chain.
    Padmanabhan S; York EJ; Stewart JM; Baldwin RL
    J Mol Biol; 1996 Apr; 257(3):726-34. PubMed ID: 8648636
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Helix-coil transition of alanine peptides in water: force field dependence on the folded and unfolded structures.
    Gnanakaran S; García AE
    Proteins; 2005 Jun; 59(4):773-82. PubMed ID: 15815975
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Free energy determinants of secondary structure formation: I. alpha-Helices.
    Yang AS; Honig B
    J Mol Biol; 1995 Sep; 252(3):351-65. PubMed ID: 7563056
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Folding Simulations of an α-Helical Hairpin Motif αtα with Residue-Specific Force Fields.
    Zeng J; Jiang F; Wu YD
    J Phys Chem B; 2016 Jan; 120(1):33-41. PubMed ID: 26673753
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of chirality and steric hindrance on intrinsic backbone conformational propensities: tools for protein design.
    Childers MC; Towse CL; Daggett V
    Protein Eng Des Sel; 2016 Jul; 29(7):271-80. PubMed ID: 27284086
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Helix propagation and N-cap propensities of the amino acids measured in alanine-based peptides in 40 volume percent trifluoroethanol.
    Rohl CA; Chakrabartty A; Baldwin RL
    Protein Sci; 1996 Dec; 5(12):2623-37. PubMed ID: 8976571
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Helix propensities calculations for amino acids in alanine based peptides using Jarzynski's equality.
    Echeverria I; Amzel LM
    Proteins; 2010 Apr; 78(5):1302-10. PubMed ID: 20014024
    [TBL] [Abstract][Full Text] [Related]  

  • 51. FF12MC: A revised AMBER forcefield and new protein simulation protocol.
    Pang YP
    Proteins; 2016 Oct; 84(10):1490-516. PubMed ID: 27348292
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Are Protein Force Fields Getting Better? A Systematic Benchmark on 524 Diverse NMR Measurements.
    Beauchamp KA; Lin YS; Das R; Pande VS
    J Chem Theory Comput; 2012 Apr; 8(4):1409-1414. PubMed ID: 22754404
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The intrinsic conformational features of amino acids from a protein coil library and their applications in force field development.
    Jiang F; Han W; Wu YD
    Phys Chem Chem Phys; 2013 Mar; 15(10):3413-28. PubMed ID: 23385383
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Exploring and characterizing the folding processes of Lys- and Arg-containing Ala-based peptides: a molecular dynamics study.
    Janzsó G; Bogár F; Hudoba L; Penke B; Rákhely G; Leitgeb B
    Comput Biol Chem; 2011 Aug; 35(4):240-50. PubMed ID: 21864793
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Experimental verification of force fields for molecular dynamics simulations using Gly-Pro-Gly-Gly.
    Aliev AE; Courtier-Murias D
    J Phys Chem B; 2010 Sep; 114(38):12358-75. PubMed ID: 20825228
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dependence of α-helical and β-sheet amino acid propensities on the overall protein fold type.
    Fujiwara K; Toda H; Ikeguchi M
    BMC Struct Biol; 2012 Aug; 12():18. PubMed ID: 22857400
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Osmotic Pressure Simulations of Amino Acids and Peptides Highlight Potential Routes to Protein Force Field Parameterization.
    Miller MS; Lay WK; Elcock AH
    J Phys Chem B; 2016 Aug; 120(33):8217-29. PubMed ID: 27052117
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The occurrence of C--H...O hydrogen bonds in alpha-helices and helix termini in globular proteins.
    Manikandan K; Ramakumar S
    Proteins; 2004 Sep; 56(4):768-81. PubMed ID: 15281129
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Conformational similarity indices between different residues in proteins and alpha-helix propensities.
    Pal D; Chakrabarti P
    J Biomol Struct Dyn; 2000 Oct; 18(2):273-80. PubMed ID: 11089648
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
    Avbelj F
    J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.