BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 22456315)

  • 1. New insights into the SAGA complex from studies of the Tra1 subunit in budding and fission yeast.
    Helmlinger D
    Transcription; 2012; 3(1):13-8. PubMed ID: 22456315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Domains of Tra1 important for activator recruitment and transcription coactivator functions of SAGA and NuA4 complexes.
    Knutson BA; Hahn S
    Mol Cell Biol; 2011 Feb; 31(4):818-31. PubMed ID: 21149579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chaperone-mediated ordered assembly of the SAGA and NuA4 transcription co-activator complexes in yeast.
    Elías-Villalobos A; Toullec D; Faux C; Séveno M; Helmlinger D
    Nat Commun; 2019 Nov; 10(1):5237. PubMed ID: 31748520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Pseudokinase Domain of
    Berg MD; Genereaux J; Karagiannis J; Brandl CJ
    G3 (Bethesda); 2018 May; 8(6):1943-1957. PubMed ID: 29626083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryo-EM structure of the SAGA and NuA4 coactivator subunit Tra1 at 3.7 angstrom resolution.
    Díaz-Santín LM; Lukoyanova N; Aciyan E; Cheung AC
    Elife; 2017 Aug; 6():. PubMed ID: 28767037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The S. pombe SAGA complex controls the switch from proliferation to sexual differentiation through the opposing roles of its subunits Gcn5 and Spt8.
    Helmlinger D; Marguerat S; Villén J; Gygi SP; Bähler J; Winston F
    Genes Dev; 2008 Nov; 22(22):3184-95. PubMed ID: 19056896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Share and share alike: the role of Tra1 from the SAGA and NuA4 coactivator complexes.
    Cheung ACM; Díaz-Santín LM
    Transcription; 2019 Feb; 10(1):37-43. PubMed ID: 30375921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The essential function of Rrs1 in ribosome biogenesis is conserved in budding and fission yeasts.
    Wan K; Kawara H; Yamamoto T; Kume K; Yabuki Y; Goshima T; Kitamura K; Ueno M; Kanai M; Hirata D; Funato K; Mizuta K
    Yeast; 2015 Sep; 32(9):607-14. PubMed ID: 26122634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-depth profiling of post-translational modifications on the related transcription factor complexes TFIID and SAGA.
    Mischerikow N; Spedale G; Altelaar AF; Timmers HT; Pijnappel WW; Heck AJ
    J Proteome Res; 2009 Nov; 8(11):5020-30. PubMed ID: 19731963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of the transcription activator target Tra1 within the chromatin modifying complex SAGA.
    Sharov G; Voltz K; Durand A; Kolesnikova O; Papai G; Myasnikov AG; Dejaegere A; Ben Shem A; Schultz P
    Nat Commun; 2017 Nov; 8(1):1556. PubMed ID: 29146944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutational analysis of the C-terminal FATC domain of Saccharomyces cerevisiae Tra1.
    Hoke SM; Irina Mutiu A; Genereaux J; Kvas S; Buck M; Yu M; Gloor GB; Brandl CJ
    Curr Genet; 2010 Oct; 56(5):447-65. PubMed ID: 20635087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orchestration of chromatin-based processes: mind the TRRAP.
    Murr R; Vaissière T; Sawan C; Shukla V; Herceg Z
    Oncogene; 2007 Aug; 26(37):5358-72. PubMed ID: 17694078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SAGA is an essential in vivo target of the yeast acidic activator Gal4p.
    Bhaumik SR; Green MR
    Genes Dev; 2001 Aug; 15(15):1935-45. PubMed ID: 11485988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic evidence links the ASTRA protein chaperone component Tti2 to the SAGA transcription factor Tra1.
    Genereaux J; Kvas S; Dobransky D; Karagiannis J; Gloor GB; Brandl CJ
    Genetics; 2012 Jul; 191(3):765-80. PubMed ID: 22505622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tra1 has specific regulatory roles, rather than global functions, within the SAGA co-activator complex.
    Helmlinger D; Marguerat S; Villén J; Swaney DL; Gygi SP; Bähler J; Winston F
    EMBO J; 2011 Jun; 30(14):2843-52. PubMed ID: 21642955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Not5-dependent co-translational assembly of Ada2 and Spt20 is essential for functional integrity of SAGA.
    Kassem S; Villanyi Z; Collart MA
    Nucleic Acids Res; 2017 Feb; 45(3):1186-1199. PubMed ID: 28180299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Che1/AATF interacts with subunits of the histone acetyltransferase core module of SAGA complexes.
    Caliskan G; Baris IC; Ayaydin F; Dobson MJ; Senarisoy M; Boros IM; Topcu Z; Zencir S
    PLoS One; 2017; 12(12):e0189193. PubMed ID: 29232376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heteromer formation of a long-chain prenyl diphosphate synthase from fission yeast Dps1 and budding yeast Coq1.
    Zhang M; Luo J; Ogiyama Y; Saiki R; Kawamukai M
    FEBS J; 2008 Jul; 275(14):3653-68. PubMed ID: 18540885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncovering the role of Sgf73 in maintaining SAGA deubiquitinating module structure and activity.
    Yan M; Wolberger C
    J Mol Biol; 2015 Apr; 427(8):1765-78. PubMed ID: 25526805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide characterisation of the Gcn5 histone acetyltransferase in budding yeast during stress adaptation reveals evolutionarily conserved and diverged roles.
    Xue-Franzén Y; Johnsson A; Brodin D; Henriksson J; Bürglin TR; Wright AP
    BMC Genomics; 2010 Mar; 11():200. PubMed ID: 20338033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.