BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 22456323)

  • 1. Imaging neuroinflammation after stroke: current status of cellular and molecular MRI strategies.
    Deddens LH; Van Tilborg GA; Mulder WJ; De Vries HE; Dijkhuizen RM
    Cerebrovasc Dis; 2012; 33(4):392-402. PubMed ID: 22456323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging of inflammation in the peripheral and central nervous system by magnetic resonance imaging.
    Stoll G; Bendszus M
    Neuroscience; 2009 Feb; 158(3):1151-60. PubMed ID: 18651996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Target-specific paramagnetic and superparamagnetic micelles for molecular MR imaging.
    Straathof R; Strijkers GJ; Nicolay K
    Methods Mol Biol; 2011; 771():691-715. PubMed ID: 21874503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MRI of monocyte infiltration in an animal model of neuroinflammation using SPIO-labeled monocytes or free USPIO.
    Oude Engberink RD; Blezer EL; Hoff EI; van der Pol SM; van der Toorn A; Dijkhuizen RM; de Vries HE
    J Cereb Blood Flow Metab; 2008 Apr; 28(4):841-51. PubMed ID: 18000513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging seizure-induced inflammation using an antibody targeted iron oxide contrast agent.
    Duffy BA; Choy M; Riegler J; Wells JA; Anthony DC; Scott RC; Lythgoe MF
    Neuroimage; 2012 Apr; 60(2):1149-55. PubMed ID: 22266177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of brain pathology by magnetic resonance imaging of iron oxide micro-particles.
    Anthony DC; Sibson NR; McAteer MA; Davis B; Choudhury RP
    Methods Mol Biol; 2011; 686():213-27. PubMed ID: 21082373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic resonance imaging of brain inflammation using microparticles of iron oxide.
    McAteer MA; von Zur Muhlen C; Anthony DC; Sibson NR; Choudhury RP
    Methods Mol Biol; 2011; 680():103-15. PubMed ID: 21153376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular magnetic resonance imaging using superparamagnetic anionic iron oxide nanoparticles: applications to in vivo trafficking of lymphocytes and cell-based anticancer therapy.
    Smirnov P
    Methods Mol Biol; 2009; 512():333-53. PubMed ID: 19347287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contrast agents: magnetic resonance.
    Burtea C; Laurent S; Vander Elst L; Muller RN
    Handb Exp Pharmacol; 2008; (185 Pt 1):135-65. PubMed ID: 18626802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging.
    Mulder WJ; Strijkers GJ; van Tilborg GA; Griffioen AW; Nicolay K
    NMR Biomed; 2006 Feb; 19(1):142-64. PubMed ID: 16450332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pushing the sensitivity envelope of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular imaging applications.
    Aime S; Castelli DD; Crich SG; Gianolio E; Terreno E
    Acc Chem Res; 2009 Jul; 42(7):822-31. PubMed ID: 19534516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron oxide MR contrast agents for molecular and cellular imaging.
    Bulte JW; Kraitchman DL
    NMR Biomed; 2004 Nov; 17(7):484-99. PubMed ID: 15526347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial diversity of blood-brain barrier alteration and macrophage invasion in experimental autoimmune encephalomyelitis: a comparative MRI study.
    Ladewig G; Jestaedt L; Misselwitz B; Solymosi L; Toyka K; Bendszus M; Stoll G
    Exp Neurol; 2009 Nov; 220(1):207-11. PubMed ID: 19733560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Hepatic and hepatocarcinoma magnetic resonance: comparison of the results obtained with paramagnetic (gadolinium) and superparamagnetic (iron oxide particles) contrast media].
    Castoldi MC; Fauda V; Scaramuzza D; Vergnaghi D
    Radiol Med; 2000 Sep; 100(3):160-7. PubMed ID: 11148882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microgel iron oxide nanoparticles for tracking human fetal mesenchymal stem cells through magnetic resonance imaging.
    Lee ES; Chan J; Shuter B; Tan LG; Chong MS; Ramachandra DL; Dawe GS; Ding J; Teoh SH; Beuf O; Briguet A; Tam KC; Choolani M; Wang SC
    Stem Cells; 2009 Aug; 27(8):1921-31. PubMed ID: 19544438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo visualization of macrophage infiltration and activity in inflammation using magnetic resonance imaging.
    Beckmann N; Cannet C; Babin AL; Blé FX; Zurbruegg S; Kneuer R; Dousset V
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2009; 1(3):272-98. PubMed ID: 20049797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Paramagnetic liposomes for molecular MRI and MRI-guided drug delivery.
    Langereis S; Geelen T; Grüll H; Strijkers GJ; Nicolay K
    NMR Biomed; 2013 Jul; 26(7):728-44. PubMed ID: 23703874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PECAM-1-targeted micron-sized particles of iron oxide as MRI contrast agent for detection of vascular remodeling after cerebral ischemia.
    Deddens LH; van Tilborg GA; van der Toorn A; de Vries HE; Dijkhuizen RM
    Contrast Media Mol Imaging; 2013; 8(5):393-401. PubMed ID: 23740809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Giant vesicles containing superparamagnetic iron oxide as biodegradable cell-tracking MRI probes.
    Toyota T; Ohguri N; Maruyama K; Fujinami M; Saga T; Aoki I
    Anal Chem; 2012 May; 84(9):3952-7. PubMed ID: 22468765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-sensitive molecular MRI of vascular cell adhesion molecule-1 reveals a dynamic inflammatory penumbra after strokes.
    Gauberti M; Montagne A; Marcos-Contreras OA; Le Béhot A; Maubert E; Vivien D
    Stroke; 2013 Jul; 44(7):1988-96. PubMed ID: 23743972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.