These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 22456471)

  • 21. Assignment of relative configuration of desoxypropionates by 1H NMR spectroscopy: method development, proof of principle by asymmetric total synthesis of xylarinic acid A and applications.
    Schmidt Y; Lehr K; Colas L; Breit B
    Chemistry; 2012 Jun; 18(23):7071-81. PubMed ID: 22544461
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural basis of multivalent binding to wheat germ agglutinin.
    Schwefel D; Maierhofer C; Beck JG; Seeberger S; Diederichs K; Möller HM; Welte W; Wittmann V
    J Am Chem Soc; 2010 Jun; 132(25):8704-19. PubMed ID: 20527753
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TROSY-based NMR experiments for the study of macromolecular dynamics and hydrogen bonding.
    Zhu G; Xia Y; Lin D; Gao X
    Methods Mol Biol; 2004; 278():161-84. PubMed ID: 15317997
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SOS-NMR: a saturation transfer NMR-based method for determining the structures of protein-ligand complexes.
    Hajduk PJ; Mack JC; Olejniczak ET; Park C; Dandliker PJ; Beutel BA
    J Am Chem Soc; 2004 Mar; 126(8):2390-8. PubMed ID: 14982445
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Incorporating residual dipolar couplings into the NMR solution structure determination of nucleic acids.
    Zhou H; Vermeulen A; Jucker FM; Pardi A
    Biopolymers; 1999-2000; 52(4):168-80. PubMed ID: 11295749
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NMR structure of human erythropoietin and a comparison with its receptor bound conformation.
    Cheetham JC; Smith DM; Aoki KH; Stevenson JL; Hoeffel TJ; Syed RS; Egrie J; Harvey TS
    Nat Struct Biol; 1998 Oct; 5(10):861-6. PubMed ID: 9783743
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of protein-ligand interactions by high-resolution solid-state NMR spectroscopy.
    Zech SG; Olejniczak E; Hajduk P; Mack J; McDermott AE
    J Am Chem Soc; 2004 Nov; 126(43):13948-53. PubMed ID: 15506755
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accounting for conformational variability in protein-ligand docking with NMR-guided rescoring.
    Skjærven L; Codutti L; Angelini A; Grimaldi M; Latek D; Monecke P; Dreyer MK; Carlomagno T
    J Am Chem Soc; 2013 Apr; 135(15):5819-27. PubMed ID: 23565800
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure of an allosteric inhibitor of LFA-1 bound to the I-domain studied by crystallography, NMR, and calorimetry.
    Crump MP; Ceska TA; Spyracopoulos L; Henry A; Archibald SC; Alexander R; Taylor RJ; Findlow SC; O'Connell J; Robinson MK; Shock A
    Biochemistry; 2004 Mar; 43(9):2394-404. PubMed ID: 14992576
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NMR studies of protein-ligand interactions.
    Goldflam M; Tarragó T; Gairí M; Giralt E
    Methods Mol Biol; 2012; 831():233-59. PubMed ID: 22167678
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CABS-NMR--De novo tool for rapid global fold determination from chemical shifts, residual dipolar couplings and sparse methyl-methyl NOEs.
    Latek D; Kolinski A
    J Comput Chem; 2011 Feb; 32(3):536-44. PubMed ID: 20806263
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ligand-induced stabilization of PPARgamma monitored by NMR spectroscopy: implications for nuclear receptor activation.
    Johnson BA; Wilson EM; Li Y; Moller DE; Smith RG; Zhou G
    J Mol Biol; 2000 Apr; 298(2):187-94. PubMed ID: 10764590
    [TBL] [Abstract][Full Text] [Related]  

  • 33. X-ray crystallography and NMR reveal complementary views of structure and dynamics.
    Brünger AT
    Nat Struct Biol; 1997 Oct; 4 Suppl():862-5. PubMed ID: 9377160
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NMR solution structure of type II human cellular retinoic acid binding protein: implications for ligand binding.
    Wang L; Li Y; Abildgaard F; Markley JL; Yan H
    Biochemistry; 1998 Sep; 37(37):12727-36. PubMed ID: 9737849
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Small-molecule binding sites on proteins established by paramagnetic NMR spectroscopy.
    Guan JY; Keizers PH; Liu WM; Löhr F; Skinner SP; Heeneman EA; Schwalbe H; Ubbink M; Siegal G
    J Am Chem Soc; 2013 Apr; 135(15):5859-68. PubMed ID: 23509882
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of methyl 13C-15N dipolar couplings in peptides and proteins by three-dimensional and four-dimensional magic-angle spinning solid-state NMR spectroscopy.
    Helmus JJ; Nadaud PS; Höfer N; Jaroniec CP
    J Chem Phys; 2008 Feb; 128(5):052314. PubMed ID: 18266431
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of the conformation of trimethoprim in the binding pocket of bovine dihydrofolate reductase from a STD-NMR intensity-restrained CORCEMA-ST optimization.
    Jayalakshmi V; Krishna NR
    J Am Chem Soc; 2005 Oct; 127(40):14080-4. PubMed ID: 16201830
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NMR backbone dynamics of the human type I interferon binding subunit, a representative cytokine receptor.
    Chill JH; Quadt SR; Anglister J
    Biochemistry; 2004 Aug; 43(31):10127-37. PubMed ID: 15287740
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Towards structural genomics of RNA: rapid NMR resonance assignment and simultaneous RNA tertiary structure determination using residual dipolar couplings.
    Al-Hashimi HM; Gorin A; Majumdar A; Gosser Y; Patel DJ
    J Mol Biol; 2002 May; 318(3):637-49. PubMed ID: 12054812
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SESAME-HSQC for simultaneous measurement of NH and CH scalar and residual dipolar couplings.
    Würtz P; Permi P
    Magn Reson Chem; 2007 Apr; 45(4):289-95. PubMed ID: 17310475
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.