BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 22456903)

  • 21. Regulatory insights into the production of UDP-N-acetylglucosamine by Lactobacillus casei.
    Rodríguez-Díaz J; Rubio-Del-Campo A; Yebra MJ
    Bioengineered; 2012; 3(6):339-42. PubMed ID: 22825354
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Copurification of glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase activities of Escherichia coli: characterization of the glmU gene product as a bifunctional enzyme catalyzing two subsequent steps in the pathway for UDP-N-acetylglucosamine synthesis.
    Mengin-Lecreulx D; van Heijenoort J
    J Bacteriol; 1994 Sep; 176(18):5788-95. PubMed ID: 8083170
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Insights into the binding specificity and catalytic mechanism of N-acetylhexosamine 1-phosphate kinases through multiple reaction complexes.
    Wang KC; Lyu SY; Liu YC; Chang CY; Wu CJ; Li TL
    Acta Crystallogr D Biol Crystallogr; 2014 May; 70(Pt 5):1401-10. PubMed ID: 24816108
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acetamido sugar biosynthesis in the Euryarchaea.
    Namboori SC; Graham DE
    J Bacteriol; 2008 Apr; 190(8):2987-96. PubMed ID: 18263721
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemo-enzymatic synthesis of fluorinated 2-N-acetamidosugar nucleotides using UDP-GlcNAc pyrophosphorylase.
    Feng F; Okuyama K; Niikura K; Ohta T; Sadamoto R; Monde K; Noguchi T; Nishimura S
    Org Biomol Chem; 2004 Jun; 2(11):1617-23. PubMed ID: 15162214
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-step enzymatic synthesis of UDP-N-acetylgalactosamine.
    Bourgeaux V; Piller F; Piller V
    Bioorg Med Chem Lett; 2005 Dec; 15(24):5459-62. PubMed ID: 16203137
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic engineering of Lactobacillus casei for production of UDP-N-acetylglucosamine.
    Rodríguez-Díaz J; Rubio-del-Campo A; Yebra MJ
    Biotechnol Bioeng; 2012 Jul; 109(7):1704-12. PubMed ID: 22383248
    [TBL] [Abstract][Full Text] [Related]  

  • 28. One-pot enzymatic production of 2-acetamido-2-deoxy-D-galactose (GalNAc) from 2-acetamido-2-deoxy-D-glucose (GlcNAc).
    Inoue K; Nishimoto M; Kitaoka M
    Carbohydr Res; 2011 Nov; 346(15):2432-6. PubMed ID: 21955790
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Purification and characterization of human serum N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase.
    Lee JK; Pierce M
    Arch Biochem Biophys; 1995 Jun; 319(2):413-25. PubMed ID: 7786023
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition studies on Mycobacterium tuberculosis N-acetylglucosamine-1-phosphate uridyltransferase (GlmU).
    Tran AT; Wen D; West NP; Baker EN; Britton WJ; Payne RJ
    Org Biomol Chem; 2013 Dec; 11(46):8113-26. PubMed ID: 24158720
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of the gonococcal glmU gene encoding the enzyme N-acetylglucosamine 1-phosphate uridyltransferase involved in the synthesis of UDP-GlcNAc.
    Ullrich J; van Putten JP
    J Bacteriol; 1995 Dec; 177(23):6902-9. PubMed ID: 7592484
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression, essentiality, and a microtiter plate assay for mycobacterial GlmU, the bifunctional glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase.
    Zhang W; Jones VC; Scherman MS; Mahapatra S; Crick D; Bhamidi S; Xin Y; McNeil MR; Ma Y
    Int J Biochem Cell Biol; 2008; 40(11):2560-71. PubMed ID: 18573680
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic properties of Mycobacterium tuberculosis bifunctional GlmU.
    Zhou Y; Xin Y; Sha S; Ma Y
    Arch Microbiol; 2011 Oct; 193(10):751-7. PubMed ID: 21594607
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemoenzymatic synthesis of uridine diphosphate-GlcNAc and uridine diphosphate-GalNAc analogs for the preparation of unnatural glycosaminoglycans.
    Masuko S; Bera S; Green DE; Weïwer M; Liu J; DeAngelis PL; Linhardt RJ
    J Org Chem; 2012 Feb; 77(3):1449-56. PubMed ID: 22239739
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lipid-mediated glycosylation in human liver. Characterization of the enzymatic transfer of N-acetylglucosamine from UDP-N-acetylglucosamine and mannose from GDP-mannose to dolichyl phosphate.
    Alhadeff JA; Watkins P
    Enzyme; 1984; 31(2):90-103. PubMed ID: 6202504
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced uridine diphosphate N-acetylglucosamine production using whole-cell catalysis.
    Ying H; Chen X; Cao H; Xiong J; Hong Y; Bai J; Li Z
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):677-83. PubMed ID: 19415266
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization and partial purification of a novel enzymatic activity. UDP-GlcNAc:Ser-protein N-acetylglucosamine-1-phosphotransferase from the cellular slime mold Dictyostelium discoideum.
    Merello S; Parodi AJ; Couso R
    J Biol Chem; 1995 Mar; 270(13):7281-7. PubMed ID: 7706268
    [TBL] [Abstract][Full Text] [Related]  

  • 38. GlmU (N-acetylglucosamine-1-phosphate uridyltransferase) bound to three magnesium ions and ATP at the active site.
    Vithani N; Bais V; Prakash B
    Acta Crystallogr F Struct Biol Commun; 2014 Jun; 70(Pt 6):703-8. PubMed ID: 24915076
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Repetitive Batch Mode Facilitates Enzymatic Synthesis of the Nucleotide Sugars UDP-Gal, UDP-GlcNAc, and UDP-GalNAc on a Multi-Gram Scale.
    Fischöder T; Wahl C; Zerhusen C; Elling L
    Biotechnol J; 2019 Apr; 14(4):. PubMed ID: 30367549
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemoenzymatic synthesis of uridine 5'-diphospho-2-acetonyl-2-deoxy-alpha-D-glucose as C(2)-carbon isostere of UDP-GlcNAc.
    Cai L; Guan W; Chen W; Wang PG
    J Org Chem; 2010 May; 75(10):3492-4. PubMed ID: 20384302
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.