These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
911 related articles for article (PubMed ID: 22456931)
41. Controlled release of simvastatin-loaded thermo-sensitive PLGA-PEG-PLGA hydrogel for bone tissue regeneration: in vitro and in vivo characteristics. Yan Q; Xiao LQ; Tan L; Sun W; Wu T; Chen LW; Mei Y; Shi B J Biomed Mater Res A; 2015 Nov; 103(11):3580-9. PubMed ID: 25969423 [TBL] [Abstract][Full Text] [Related]
42. Injectable block copolymer hydrogels for sustained release of a PEGylated drug. Yu L; Chang GT; Zhang H; Ding JD Int J Pharm; 2008 Feb; 348(1-2):95-106. PubMed ID: 17825508 [TBL] [Abstract][Full Text] [Related]
43. Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel. Gong C; Shi S; Dong P; Kan B; Gou M; Wang X; Li X; Luo F; Zhao X; Wei Y; Qian Z Int J Pharm; 2009 Jan; 365(1-2):89-99. PubMed ID: 18793709 [TBL] [Abstract][Full Text] [Related]
44. Novel mesoporous silica-based antibiotic releasing scaffold for bone repair. Shi X; Wang Y; Ren L; Zhao N; Gong Y; Wang DA Acta Biomater; 2009 Jun; 5(5):1697-707. PubMed ID: 19217361 [TBL] [Abstract][Full Text] [Related]
45. Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering. Katti KS; Katti DR; Dash R Biomed Mater; 2008 Sep; 3(3):034122. PubMed ID: 18765898 [TBL] [Abstract][Full Text] [Related]
46. Poly(ethylene glycol) methacrylate/dimethacrylate hydrogels for controlled release of hydrophobic drugs. Diramio JA; Kisaalita WS; Majetich GF; Shimkus JM Biotechnol Prog; 2005; 21(4):1281-8. PubMed ID: 16080712 [TBL] [Abstract][Full Text] [Related]
47. Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. Dhivya S; Saravanan S; Sastry TP; Selvamurugan N J Nanobiotechnology; 2015 Jun; 13():40. PubMed ID: 26065678 [TBL] [Abstract][Full Text] [Related]
48. Novel scaffolds based on poly(2-hydroxyethyl methacrylate) superporous hydrogels for bone tissue engineering. Çetin D; Kahraman AS; Gümüşderelioğlu M J Biomater Sci Polym Ed; 2011; 22(9):1157-78. PubMed ID: 20615330 [TBL] [Abstract][Full Text] [Related]
49. Gel-derived bioglass as a compound of hydroxyapatite composites. Cholewa-Kowalska K; Kokoszka J; Laczka M; Niedźwiedzki L; Madej W; Osyczka AM Biomed Mater; 2009 Oct; 4(5):055007. PubMed ID: 19779249 [TBL] [Abstract][Full Text] [Related]
50. Injectable thermosensitive PLGA-PEG-PLGA triblock copolymers-based hydrogels as carriers for interleukin-2. Qiao M; Chen D; Hao T; Zhao X; Hu H; Ma X Pharmazie; 2008 Jan; 63(1):27-30. PubMed ID: 18271299 [TBL] [Abstract][Full Text] [Related]
51. Injectable biodegradable temperature-responsive PLGA-PEG-PLGA copolymers: synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels. Qiao M; Chen D; Ma X; Liu Y Int J Pharm; 2005 Apr; 294(1-2):103-12. PubMed ID: 15814234 [TBL] [Abstract][Full Text] [Related]
52. Mechanical properties and in vitro response of strontium-containing hydroxyapatite/polyetheretherketone composites. Wong KL; Wong CT; Liu WC; Pan HB; Fong MK; Lam WM; Cheung WL; Tang WM; Chiu KY; Luk KD; Lu WW Biomaterials; 2009 Aug; 30(23-24):3810-7. PubMed ID: 19427032 [TBL] [Abstract][Full Text] [Related]
53. Synthesis, characterization and controlled drug release of thermosensitive IPN-PNIPAAm hydrogels. Zhang XZ; Wu DQ; Chu CC Biomaterials; 2004 Aug; 25(17):3793-805. PubMed ID: 15020155 [TBL] [Abstract][Full Text] [Related]
54. Fabrication and mechanical evaluation of hydroxyapatite/oxide nano-composite materials. Mohamed KR; Beherei HH; El Bassyouni GT; El Mahallawy N Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4126-32. PubMed ID: 23910323 [TBL] [Abstract][Full Text] [Related]
55. Biodegradable Thermosensitive PLGA-PEG-PLGA Polymer for Non-irritating and Sustained Ophthalmic Drug Delivery. Chan PS; Xian JW; Li Q; Chan CW; Leung SSY; To KKW AAPS J; 2019 Apr; 21(4):59. PubMed ID: 31020458 [TBL] [Abstract][Full Text] [Related]
56. A preliminary study on the morphological and release properties of hydroxyapatite-alendronate composite materials. Capra P; Dorati R; Colonna C; Bruni G; Pavanetto F; Genta I; Conti B J Microencapsul; 2011; 28(5):395-405. PubMed ID: 21736524 [TBL] [Abstract][Full Text] [Related]
57. Injectable and thermosensitive nanofibrous hydrogel for bone tissue engineering. Wasupalli GK; Verma D Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110343. PubMed ID: 31761212 [TBL] [Abstract][Full Text] [Related]
58. Novel poly(hydroxyalkanoates)-based composites containing Bioglass® and calcium sulfate for bone tissue engineering. García-García JM; Garrido L; Quijada-Garrido I; Kaschta J; Schubert DW; Boccaccini AR Biomed Mater; 2012 Oct; 7(5):054105. PubMed ID: 22972204 [TBL] [Abstract][Full Text] [Related]
59. Thermosensitive PEG-PCL-PEG hydrogel controlled drug delivery system: sol-gel-sol transition and in vitro drug release study. Gong CY; Dong PW; Shi S; Fu SZ; Yang JL; Guo G; Zhao X; Wei YQ; Qian ZY J Pharm Sci; 2009 Oct; 98(10):3707-17. PubMed ID: 19189419 [TBL] [Abstract][Full Text] [Related]
60. Dually responsive injectable hydrogel prepared by in situ cross-linking of glycol chitosan and benzaldehyde-capped PEO-PPO-PEO. Ding C; Zhao L; Liu F; Cheng J; Gu J; Dan S; Liu C; Qu X; Yang Z Biomacromolecules; 2010 Apr; 11(4):1043-51. PubMed ID: 20337439 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]