These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 22456952)
21. Inhibition of polar calcium movement and gravitropism in roots treated with auxin-transport inhibitors. Lee JS; Mulkey TJ; Evans ML Planta; 1984; 160():536-43. PubMed ID: 11540830 [TBL] [Abstract][Full Text] [Related]
22. Stipules in Apocynaceae: an ontogenetic perspective. do Valle Capelli N; Alonso Rodrigues B; Demarco D AoB Plants; 2017 Jan; 9(1):plw083. PubMed ID: 28694936 [TBL] [Abstract][Full Text] [Related]
23. The mutant crispa reveals multiple roles for PHANTASTICA in pea compound leaf development. Tattersall AD; Turner L; Knox MR; Ambrose MJ; Ellis TH; Hofer JM Plant Cell; 2005 Apr; 17(4):1046-60. PubMed ID: 15749758 [TBL] [Abstract][Full Text] [Related]
24. The transcriptional co-regulators NBCL1 and NBCL2 redundantly coordinate aerial organ development and root nodule identity in legumes. Liu S; Magne K; Zhou J; Laude J; Dalmais M; Le Signor C; Bendahmane A; Thompson R; Couzigou JM; Ratet P J Exp Bot; 2023 Jan; 74(1):194-213. PubMed ID: 36197099 [TBL] [Abstract][Full Text] [Related]
25. Expression of gibberellin 20-oxidase1 (AtGA20ox1) in Arabidopsis seedlings with altered auxin status is regulated at multiple levels. Desgagné-Penix I; Sponsel VM J Exp Bot; 2008; 59(8):2057-70. PubMed ID: 18440929 [TBL] [Abstract][Full Text] [Related]
26. Competitive canalization of PIN-dependent auxin flow from axillary buds controls pea bud outgrowth. Balla J; Kalousek P; Reinöhl V; Friml J; Procházka S Plant J; 2011 Feb; 65(4):571-7. PubMed ID: 21219506 [TBL] [Abstract][Full Text] [Related]
27. Automorphosis of etiolated pea seedlings in space is simulated by a three-dimensional clinostat and the application of inhibitors of auxin polar transport. Miyamoto K; Hoshino T; Yamashita M; Ueda J Physiol Plant; 2005 Apr; 123(4):467-74. PubMed ID: 15844285 [TBL] [Abstract][Full Text] [Related]
28. Automorphosis and auxin polar transport of etiolated pea seedlings under microgravity conditions. Hoshino T; Miyamoto K; Ueda J Biol Sci Space; 2004 Nov; 18(3):94-5. PubMed ID: 15858337 [TBL] [Abstract][Full Text] [Related]
29. Influence of the shoot tip and leaves on circumnutation in green pea seedlings. Tepper HB; Yang RL Bot Acta; 1996 Dec; 109(6):502-5. PubMed ID: 11539847 [TBL] [Abstract][Full Text] [Related]
30. [Effect of the auxin polar transport inhibitor on the morphogenesis of leaves and generative structures during fasciation in Arabidopsis thaliana (L.) Heynh]. Bykova EA; Chergintsev DA; Vlasova TA; Choob VV Ontogenez; 2016; 47(4):235-43. PubMed ID: 30272402 [TBL] [Abstract][Full Text] [Related]
31. Naphthylphthalamic acid and the mechanism of polar auxin transport. Teale W; Palme K J Exp Bot; 2018 Jan; 69(2):303-312. PubMed ID: 28992080 [TBL] [Abstract][Full Text] [Related]
32. Polar auxin transport is essential to maintain growth and development of etiolated pea and maize seedlings grown under 1 g conditions: Relevance to the international space station experiment. Miyamoto K; Inui A; Uheda E; Oka M; Kamada M; Yamazaki C; Shimazu T; Kasahara H; Sano H; Suzuki T; Higashibata A; Ueda J Life Sci Space Res (Amst); 2019 Feb; 20():1-11. PubMed ID: 30797426 [TBL] [Abstract][Full Text] [Related]
33. Boron Alleviates Aluminum Toxicity by Promoting Root Alkalization in Transition Zone via Polar Auxin Transport. Li X; Li Y; Mai J; Tao L; Qu M; Liu J; Shen R; Xu G; Feng Y; Xiao H; Wu L; Shi L; Guo S; Liang J; Zhu Y; He Y; Baluška F; Shabala S; Yu M Plant Physiol; 2018 Jul; 177(3):1254-1266. PubMed ID: 29784768 [TBL] [Abstract][Full Text] [Related]
34. Gravity-controlled asymmetrical transport of auxin regulates a gravitropic response in the early growth stage of etiolated pea (Pisum sativum) epicotyls: studies using simulated microgravity conditions on a three-dimensional clinostat and using an agravitropic mutant, ageotropum. Hoshino T; Miyamoto K; Ueda J J Plant Res; 2007 Sep; 120(5):619-28. PubMed ID: 17712525 [TBL] [Abstract][Full Text] [Related]
35. Morphological features and inheritance of Foliaceous Stipules of primary leaves in cowpea (Vigna unguiculata). Pandey RN; Dhanasekar P Ann Bot; 2004 Sep; 94(3):469-71. PubMed ID: 15286013 [TBL] [Abstract][Full Text] [Related]
36. Hormone interactions and regulation of Unifoliata, PsPK2, PsPIN1 and LE gene expression in pea (Pisum sativum) shoot tips. Bai F; DeMason DA Plant Cell Physiol; 2006 Jul; 47(7):935-48. PubMed ID: 16760220 [TBL] [Abstract][Full Text] [Related]
37. Studies of aberrant phyllotaxy1 mutants of maize indicate complex interactions between auxin and cytokinin signaling in the shoot apical meristem. Lee BH; Johnston R; Yang Y; Gallavotti A; Kojima M; Travençolo BA; Costa Lda F; Sakakibara H; Jackson D Plant Physiol; 2009 May; 150(1):205-16. PubMed ID: 19321707 [TBL] [Abstract][Full Text] [Related]
38. Effects of synthetic auxin (2,4-D) on the level of indolyl-3-acetic acid in cultivars and supernodulating mutants of pea (Pisum sativum L.). Kholodar AV; Sidorova KK; Shumny VK Dokl Biol Sci; 2002; 386():460-1. PubMed ID: 12469414 [No Abstract] [Full Text] [Related]