These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 22457610)

  • 1. Feedforward inhibition and synaptic scaling--two sides of the same coin?
    Keck C; Savin C; Lücke J
    PLoS Comput Biol; 2012; 8(3):e1002432. PubMed ID: 22457610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Propagation of spiking regularity and double coherence resonance in feedforward networks.
    Men C; Wang J; Qin YM; Deng B; Tsang KM; Chan WL
    Chaos; 2012 Mar; 22(1):013104. PubMed ID: 22462980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixed signal learning by spike correlation propagation in feedback inhibitory circuits.
    Hiratani N; Fukai T
    PLoS Comput Biol; 2015 Apr; 11(4):e1004227. PubMed ID: 25910189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spike propagation in driven chain networks with dominant global inhibition.
    Chang W; Jin DZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051917. PubMed ID: 19518490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two forms of feedback inhibition determine the dynamical state of a small hippocampal network.
    Zeldenrust F; Wadman WJ
    Neural Netw; 2009 Oct; 22(8):1139-58. PubMed ID: 19679445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability and Competition in Multi-spike Models of Spike-Timing Dependent Plasticity.
    Babadi B; Abbott LF
    PLoS Comput Biol; 2016 Mar; 12(3):e1004750. PubMed ID: 26939080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feed-Forward versus Feedback Inhibition in a Basic Olfactory Circuit.
    Kee T; Sanda P; Gupta N; Stopfer M; Bazhenov M
    PLoS Comput Biol; 2015 Oct; 11(10):e1004531. PubMed ID: 26458212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulus-dependent suppression of chaos in recurrent neural networks.
    Rajan K; Abbott LF; Sompolinsky H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011903. PubMed ID: 20866644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complementary Inhibitory Weight Profiles Emerge from Plasticity and Allow Flexible Switching of Receptive Fields.
    Agnes EJ; Luppi AI; Vogels TP
    J Neurosci; 2020 Dec; 40(50):9634-9649. PubMed ID: 33168622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity-dependent feedforward inhibition modulates synaptic transmission in a spinal locomotor network.
    Parker D
    J Neurosci; 2003 Dec; 23(35):11085-93. PubMed ID: 14657166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recurrent interactions in spiking networks with arbitrary topology.
    Pernice V; Staude B; Cardanobile S; Rotter S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031916. PubMed ID: 22587132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nothing can be coincidence: synaptic inhibition and plasticity in the cerebellar nuclei.
    Pugh JR; Raman IM
    Trends Neurosci; 2009 Mar; 32(3):170-7. PubMed ID: 19178955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptic convergence regulates synchronization-dependent spike transfer in feedforward neural networks.
    Sailamul P; Jang J; Paik SB
    J Comput Neurosci; 2017 Dec; 43(3):189-202. PubMed ID: 28895002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decorrelation by recurrent inhibition in heterogeneous neural circuits.
    Bernacchia A; Wang XJ
    Neural Comput; 2013 Jul; 25(7):1732-67. PubMed ID: 23607559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive self-organization in a realistic neural network model.
    Meisel C; Gross T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061917. PubMed ID: 20365200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feedback Inhibition Shapes Emergent Computational Properties of Cortical Microcircuit Motifs.
    Jonke Z; Legenstein R; Habenschuss S; Maass W
    J Neurosci; 2017 Aug; 37(35):8511-8523. PubMed ID: 28760861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Representation of input structure in synaptic weights by spike-timing-dependent plasticity.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021912. PubMed ID: 20866842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Divisive normalization in olfactory population codes.
    Olsen SR; Bhandawat V; Wilson RI
    Neuron; 2010 Apr; 66(2):287-99. PubMed ID: 20435004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homeostatic scaling of excitability in recurrent neural networks.
    Remme MW; Wadman WJ
    PLoS Comput Biol; 2012; 8(5):e1002494. PubMed ID: 22570604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic plasticity: taming the beast.
    Abbott LF; Nelson SB
    Nat Neurosci; 2000 Nov; 3 Suppl():1178-83. PubMed ID: 11127835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.