These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 22457653)
1. Pest insect olfaction in an insecticide-contaminated environment: info-disruption or hormesis effect. Tricoire-Leignel H; Thany SH; Gadenne C; Anton S Front Physiol; 2012; 3():58. PubMed ID: 22457653 [TBL] [Abstract][Full Text] [Related]
2. Unexpected effects of low doses of a neonicotinoid insecticide on behavioral responses to sex pheromone in a pest insect. Rabhi KK; Esancy K; Voisin A; Crespin L; Le Corre J; Tricoire-Leignel H; Anton S; Gadenne C PLoS One; 2014; 9(12):e114411. PubMed ID: 25517118 [TBL] [Abstract][Full Text] [Related]
3. Sublethal Exposure Effects of the Neonicotinoid Clothianidin Strongly Modify the Brain Transcriptome and Proteome in the Male Moth Meslin C; Bozzolan F; Braman V; Chardonnet S; Pionneau C; François MC; Severac D; Gadenne C; Anton S; Maibèche M; Jacquin-Joly E; Siaussat D Insects; 2021 Feb; 12(2):. PubMed ID: 33670203 [TBL] [Abstract][Full Text] [Related]
4. Unexpected effects of sublethal doses of insecticide on the peripheral olfactory response and sexual behavior in a pest insect. Lalouette L; Pottier MA; Wycke MA; Boitard C; Bozzolan F; Maria A; Demondion E; Chertemps T; Lucas P; Renault D; Maibeche M; Siaussat D Environ Sci Pollut Res Int; 2016 Feb; 23(4):3073-85. PubMed ID: 26686856 [TBL] [Abstract][Full Text] [Related]
5. Low doses of a neonicotinoid insecticide modify pheromone response thresholds of central but not peripheral olfactory neurons in a pest insect. Rabhi KK; Deisig N; Demondion E; Le Corre J; Robert G; Tricoire-Leignel H; Lucas P; Gadenne C; Anton S Proc Biol Sci; 2016 Feb; 283(1824):. PubMed ID: 26842577 [TBL] [Abstract][Full Text] [Related]
6. Behavioral and metabolic effects of sublethal doses of two insecticides, chlorpyrifos and methomyl, in the Egyptian cotton leafworm, Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). Dewer Y; Pottier MA; Lalouette L; Maria A; Dacher M; Belzunces LP; Kairo G; Renault D; Maibeche M; Siaussat D Environ Sci Pollut Res Int; 2016 Feb; 23(4):3086-96. PubMed ID: 26566611 [TBL] [Abstract][Full Text] [Related]
7. An Insecticide Further Enhances Experience-Dependent Increased Behavioural Responses to Sex Pheromone in a Pest Insect. Abrieux A; Mhamdi A; Rabhi KK; Egon J; Debernard S; Duportets L; Tricoire-Leignel H; Anton S; Gadenne C PLoS One; 2016; 11(11):e0167469. PubMed ID: 27902778 [TBL] [Abstract][Full Text] [Related]
8. Insect pathogens as biological control agents: Back to the future. Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455 [TBL] [Abstract][Full Text] [Related]
9. Exposure to sublethal doses of insecticide and their effects on insects at cellular and physiological levels. Bantz A; Camon J; Froger JA; Goven D; Raymond V Curr Opin Insect Sci; 2018 Dec; 30():73-78. PubMed ID: 30553488 [TBL] [Abstract][Full Text] [Related]
10. Insecticide-induced hormesis and arthropod pest management. Guedes RN; Cutler GC Pest Manag Sci; 2014 May; 70(5):690-7. PubMed ID: 24155227 [TBL] [Abstract][Full Text] [Related]
11. Insects, insecticides and hormesis: evidence and considerations for study. Cutler GC Dose Response; 2013; 11(2):154-77. PubMed ID: 23930099 [TBL] [Abstract][Full Text] [Related]
12. Fitness costs of resistance to insecticides in insects. Gul H; Gadratagi BG; Güncan A; Tyagi S; Ullah F; Desneux N; Liu X Front Physiol; 2023; 14():1238111. PubMed ID: 37929209 [TBL] [Abstract][Full Text] [Related]
13. Synthetic and Natural Insecticides: Gas, Liquid, Gel and Solid Formulations for Stored-Product and Food-Industry Pest Control. Stejskal V; Vendl T; Aulicky R; Athanassiou C Insects; 2021 Jun; 12(7):. PubMed ID: 34209742 [TBL] [Abstract][Full Text] [Related]
14. Insect Odorscapes: From Plant Volatiles to Natural Olfactory Scenes. Conchou L; Lucas P; Meslin C; Proffit M; Staudt M; Renou M Front Physiol; 2019; 10():972. PubMed ID: 31427985 [TBL] [Abstract][Full Text] [Related]
15. Neuroethology of Olfactory-Guided Behavior and Its Potential Application in the Control of Harmful Insects. Reisenman CE; Lei H; Guerenstein PG Front Physiol; 2016; 7():271. PubMed ID: 27445858 [TBL] [Abstract][Full Text] [Related]
17. Targeting female reproduction in insects with biorational insecticides for pest management: a critical review with suggestions for future research. Smagghe G; Zotti M; Retnakaran A Curr Opin Insect Sci; 2019 Feb; 31():65-69. PubMed ID: 31109675 [TBL] [Abstract][Full Text] [Related]
18. Hormesis and insects: Effects and interactions in agroecosystems. Cutler GC; Amichot M; Benelli G; Guedes RNC; Qu Y; Rix RR; Ullah F; Desneux N Sci Total Environ; 2022 Jun; 825():153899. PubMed ID: 35181361 [TBL] [Abstract][Full Text] [Related]
19. G protein coupled receptors as targets for next generation pesticides. Audsley N; Down RE Insect Biochem Mol Biol; 2015 Dec; 67():27-37. PubMed ID: 26226649 [TBL] [Abstract][Full Text] [Related]
20. miRNA Dynamics for Pest Management: Implications in Insecticide Resistance. Mahalle RM; Mota-Sanchez D; Pittendrigh BR; Kim YH; Seong KM Insects; 2024 Mar; 15(4):. PubMed ID: 38667368 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]