These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 22458505)

  • 1. Decision tree models for data mining in hit discovery.
    Hammann F; Drewe J
    Expert Opin Drug Discov; 2012 Apr; 7(4):341-52. PubMed ID: 22458505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the graft survival for heart-lung transplantation patients: an integrated data mining methodology.
    Oztekin A; Delen D; Kong ZJ
    Int J Med Inform; 2009 Dec; 78(12):e84-96. PubMed ID: 19497782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel trends in high-throughput screening.
    Mayr LM; Bojanic D
    Curr Opin Pharmacol; 2009 Oct; 9(5):580-8. PubMed ID: 19775937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Affinity-based screening techniques: their impact and benefit to increase the number of high quality leads.
    Bergsdorf C; Ottl J
    Expert Opin Drug Discov; 2010 Nov; 5(11):1095-107. PubMed ID: 22827747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Practical outcomes of applying ensemble machine learning classifiers to High-Throughput Screening (HTS) data analysis and screening.
    Simmons K; Kinney J; Owens A; Kleier DA; Bloch K; Argentar D; Walsh A; Vaidyanathan G
    J Chem Inf Model; 2008 Nov; 48(11):2196-206. PubMed ID: 18983143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supervised learning with decision tree-based methods in computational and systems biology.
    Geurts P; Irrthum A; Wehenkel L
    Mol Biosyst; 2009 Dec; 5(12):1593-605. PubMed ID: 20023720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developing and validating predictive decision tree models from mining chemical structural fingerprints and high-throughput screening data in PubChem.
    Han L; Wang Y; Bryant SH
    BMC Bioinformatics; 2008 Sep; 9():401. PubMed ID: 18817552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GPU accelerated support vector machines for mining high-throughput screening data.
    Liao Q; Wang J; Webster Y; Watson IA
    J Chem Inf Model; 2009 Dec; 49(12):2718-25. PubMed ID: 19961205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput screening and structure-based approaches to hit discovery: is there a clear winner?
    Jhoti H; Rees S; Solari R
    Expert Opin Drug Discov; 2013 Dec; 8(12):1449-53. PubMed ID: 24206191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine-learning approaches in drug discovery: methods and applications.
    Lavecchia A
    Drug Discov Today; 2015 Mar; 20(3):318-31. PubMed ID: 25448759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning Boolean queries for article quality filtering.
    Aphinyanaphongs Y; Aliferis CF
    Stud Health Technol Inform; 2004; 107(Pt 1):263-7. PubMed ID: 15360815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geometric decision tree.
    Manwani N; Sastry PS
    IEEE Trans Syst Man Cybern B Cybern; 2012 Feb; 42(1):181-92. PubMed ID: 21896394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How far can virtual screening take us in drug discovery?
    Kar S; Roy K
    Expert Opin Drug Discov; 2013 Mar; 8(3):245-61. PubMed ID: 23330660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing focused chemical libraries enriched in protein-protein interaction inhibitors using machine-learning methods.
    Reynès C; Host H; Camproux AC; Laconde G; Leroux F; Mazars A; Deprez B; Fahraeus R; Villoutreix BO; Sperandio O
    PLoS Comput Biol; 2010 Mar; 6(3):e1000695. PubMed ID: 20221258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PARM--an efficient algorithm to mine association rules from spatial data.
    Ding Q; Ding Q; Perrizo W
    IEEE Trans Syst Man Cybern B Cybern; 2008 Dec; 38(6):1513-24. PubMed ID: 19022723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational modeling of P450s for toxicity prediction.
    Mishra NK
    Expert Opin Drug Metab Toxicol; 2011 Oct; 7(10):1211-31. PubMed ID: 21864218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational toxicology as implemented by the U.S. EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk.
    Kavlock R; Dix D
    J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):197-217. PubMed ID: 20574897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The limitations of decision trees and automatic learning in real world medical decision making.
    Kokol P; Zorman M; Stiglic MM; Malèiae I
    Stud Health Technol Inform; 1998; 52 Pt 1():529-33. PubMed ID: 10384513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting breast cancer survivability: a comparison of three data mining methods.
    Delen D; Walker G; Kadam A
    Artif Intell Med; 2005 Jun; 34(2):113-27. PubMed ID: 15894176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of adverse drug reactions using decision tree modeling.
    Hammann F; Gutmann H; Vogt N; Helma C; Drewe J
    Clin Pharmacol Ther; 2010 Jul; 88(1):52-9. PubMed ID: 20220749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.