These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22458717)

  • 1. Human enteric pathogen internalization by root uptake into food crops.
    Hirneisen KA; Sharma M; Kniel KE
    Foodborne Pathog Dis; 2012 May; 9(5):396-405. PubMed ID: 22458717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enteric pathogen-plant interactions: molecular connections leading to colonization and growth and implications for food safety.
    Martínez-Vaz BM; Fink RC; Diez-Gonzalez F; Sadowsky MJ
    Microbes Environ; 2014; 29(2):123-35. PubMed ID: 24859308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: A review.
    Alegbeleye OO; Singleton I; Sant'Ana AS
    Food Microbiol; 2018 Aug; 73():177-208. PubMed ID: 29526204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative uptake of enteric viruses into spinach and green onions.
    Hirneisen KA; Kniel KE
    Food Environ Virol; 2013 Mar; 5(1):24-34. PubMed ID: 23412715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of curli and plant cultivation conditions on Escherichia coli O157:H7 internalization into spinach grown on hydroponics and in soil.
    Macarisin D; Patel J; Sharma VK
    Int J Food Microbiol; 2014 Mar; 173():48-53. PubMed ID: 24412958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virus-Bacteria Interactions: Implications for Prevention and Control of Human Enteric Viruses from Environment to Host.
    Dawley C; Gibson KE
    Foodborne Pathog Dis; 2019 Feb; 16(2):81-89. PubMed ID: 30394792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Internalization of fresh produce by foodborne pathogens.
    Erickson MC
    Annu Rev Food Sci Technol; 2012; 3():283-310. PubMed ID: 22243280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and origin of plant pathogenic microorganisms in recirculating nutrient solutions.
    Stanghellini ME; Rasmussen SL
    Adv Space Res; 1994 Nov; 14(11):349-55. PubMed ID: 11540205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Host growth can cause invasive spread of crops by soilborne pathogens.
    Leclerc M; Doré T; Gilligan CA; Lucas P; Filipe JA
    PLoS One; 2013; 8(5):e63003. PubMed ID: 23667560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Untangling metabolic and communication networks: interactions of enterics with phytobacteria and their implications in produce safety.
    Teplitski M; Warriner K; Bartz J; Schneider KR
    Trends Microbiol; 2011 Mar; 19(3):121-7. PubMed ID: 21177108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salmonella, Escherichia coli and Enterobacteriaceae in the peanut supply chain: From farm to table.
    Nascimento MS; Carminati JA; Silva ICRN; Silva DL; Bernardi AO; Copetti MV
    Food Res Int; 2018 Mar; 105():930-935. PubMed ID: 29433290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth.
    Artursson V; Finlay RD; Jansson JK
    Environ Microbiol; 2006 Jan; 8(1):1-10. PubMed ID: 16343316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inactivation of internalized and surface contaminated enteric viruses in green onions.
    Hirneisen KA; Kniel KE
    Int J Food Microbiol; 2013 Sep; 166(2):201-6. PubMed ID: 23973828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial Community Dynamics and Response to Plant Growth-Promoting Microorganisms in the Rhizosphere of Four Common Food Crops Cultivated in Hydroponics.
    Sheridan C; Depuydt P; De Ro M; Petit C; Van Gysegem E; Delaere P; Dixon M; Stasiak M; Aciksöz SB; Frossard E; Paradiso R; De Pascale S; Ventorino V; De Meyer T; Sas B; Geelen D
    Microb Ecol; 2017 Feb; 73(2):378-393. PubMed ID: 27645138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens.
    Sulakvelidze A
    J Sci Food Agric; 2013 Oct; 93(13):3137-46. PubMed ID: 23670852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Causes and consequences of a conserved bacterial root microbiome response to drought stress.
    Xu L; Coleman-Derr D
    Curr Opin Microbiol; 2019 Jun; 49():1-6. PubMed ID: 31454709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-phased internalization of murine norovirus (MNV) in Arabidopsis seedlings and its potential correlation with plant defensive responses.
    Kim K; Yadav D; Cho M
    Microb Pathog; 2019 Oct; 135():103648. PubMed ID: 31356928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trichoderma/pathogen/plant interaction in pre-harvest food security.
    Silva RN; Monteiro VN; Steindorff AS; Gomes EV; Noronha EF; Ulhoa CJ
    Fungal Biol; 2019 Aug; 123(8):565-583. PubMed ID: 31345411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization.
    Chen S; Waghmode TR; Sun R; Kuramae EE; Hu C; Liu B
    Microbiome; 2019 Oct; 7(1):136. PubMed ID: 31640813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Harnessing the plant microbiome to promote the growth of agricultural crops.
    Zhang J; Cook J; Nearing JT; Zhang J; Raudonis R; Glick BR; Langille MGI; Cheng Z
    Microbiol Res; 2021 Apr; 245():126690. PubMed ID: 33460987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.