These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22458963)

  • 1. Influence of combustion conditions on hydrophilic properties and microstructure of flame soot.
    Han C; Liu Y; Liu C; Ma J; He H
    J Phys Chem A; 2012 Apr; 116(16):4129-36. PubMed ID: 22458963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of soot microstructure on its ozonization reactivity.
    Han C; Liu Y; Ma J; He H
    J Chem Phys; 2012 Aug; 137(8):084507. PubMed ID: 22938250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloud condensation nuclei and ice nucleation activity of hydrophobic and hydrophilic soot particles.
    Koehler KA; DeMott PJ; Kreidenweis SM; Popovicheva OB; Petters MD; Carrico CM; Kireeva ED; Khokhlova TD; Shonija NK
    Phys Chem Chem Phys; 2009 Sep; 11(36):7906-20. PubMed ID: 19727498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneous reaction of NO(2) on fresh and coated soot surfaces.
    Khalizov AF; Cruz-Quinones M; Zhang R
    J Phys Chem A; 2010 Jul; 114(28):7516-24. PubMed ID: 20575530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of heterogeneous chemistry for the characterization of functional groups at the gas/particle interface of soot and TiO2 nanoparticles.
    Setyan A; Sauvain JJ; Rossi MJ
    Phys Chem Chem Phys; 2009 Aug; 11(29):6205-17. PubMed ID: 19606331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water interaction with hydrophobic and hydrophilic soot particles.
    Popovicheva O; Persiantseva NM; Shonija NK; DeMott P; Koehler K; Petters M; Kreidenweis S; Tishkova V; Demirdjian B; Suzanne J
    Phys Chem Chem Phys; 2008 May; 10(17):2332-44. PubMed ID: 18414725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water interaction with laboratory-simulated fossil fuel combustion particles.
    Popovicheva OB; Kireeva ED; Shonija NK; Khokhlova TD
    J Phys Chem A; 2009 Oct; 113(39):10503-11. PubMed ID: 19736954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of combustion intermediates in fuel-rich methyl methacrylate flame with tunable synchrotron vacuum ultraviolet photoionization mass spectrometry.
    Lin Z; Wang T; Han D; Han X; Li S; Li Y; Tian Z
    Rapid Commun Mass Spectrom; 2009 Jan; 23(1):85-92. PubMed ID: 19051228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of organic carbon in heterogeneous reaction of NO2 with soot.
    Han C; Liu Y; He H
    Environ Sci Technol; 2013 Apr; 47(7):3174-81. PubMed ID: 23470009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of intermediates and mechanism for soot combustion with NOx/O₂ on potassium-supported Mg-Al hydrotalcite mixed oxides by in situ FTIR.
    Zhang Z; Zhang Y; Su Q; Wang Z; Li Q; Gao X
    Environ Sci Technol; 2010 Nov; 44(21):8254-8. PubMed ID: 20923141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of renewable diesel particulate matter gathered from non-premixed and partially premixed flame burners and from a diesel engine.
    Cadrazco M; Santamaría A; Jaramillo IC; Kaur K; Kelly KE; Agudelo JR
    Combust Flame; 2020 Apr; 214():65-79. PubMed ID: 32189720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dependence between nonvolatile nucleation mode particle and soot number concentrations in an EGR equipped heavy-duty Diesel engine exhaust.
    Lähde T; Rönkkö T; Virtanen A; Solla A; Kytö M; Söderström C; Keskinen J
    Environ Sci Technol; 2010 Apr; 44(8):3175-80. PubMed ID: 20199020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneous chemistry of the NO3 free radical and N2O5 on decane flame soot at ambient temperature: reaction products and kinetics.
    Karagulian F; Rossi MJ
    J Phys Chem A; 2007 Mar; 111(10):1914-26. PubMed ID: 17388277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laboratory investigation of heterogeneous interaction of sulfuric acid with soot.
    Zhang D; Zhang R
    Environ Sci Technol; 2005 Aug; 39(15):5722-8. PubMed ID: 16124308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combustion intermediates in fuel-rich 1,4-dioxane flame studied by tunable synchrotron vacuum ultraviolet photoionization.
    Lin Z; Han D; Li S; Li Y; Yuan T
    J Phys Chem A; 2009 Mar; 113(9):1800-6. PubMed ID: 19203256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is soot composed predominantly of carbon clusters?
    Ebert LB
    Science; 1990 Mar; 247(4949):1468-71. PubMed ID: 17791212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bulk and surface structural investigations of diesel engine soot and carbon black.
    Müller JO; Su DS; Wild U; Schlögl R
    Phys Chem Chem Phys; 2007 Aug; 9(30):4018-25. PubMed ID: 17646891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of the hygroscopic effect of soot aging in the atmosphere: laboratory simulations.
    Popovicheva OB; Persiantseva NM; Kireeva ED; Khokhlova TD; Shonija NK
    J Phys Chem A; 2011 Jan; 115(3):298-306. PubMed ID: 21186790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the photochemical reactivity of soot particles derived from biofuels toward NO2. A kinetic and product study.
    Romanías MN; Dagaut P; Bedjanian Y; Andrade-Eiroa A; Shahla R; Emmanouil KS; Papadimitriou VC; Spyros A
    J Phys Chem A; 2015 Mar; 119(10):2006-15. PubMed ID: 25686032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combustion-generated nanoparticles produced in a benzene flame: a multiscale approach.
    Violi A; Venkatnathan A
    J Chem Phys; 2006 Aug; 125(5):054302. PubMed ID: 16942208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.